flask_whisper / app.py
Michael Natanael
change model to turbo
816f4f3
raw
history blame
6.1 kB
from flask import Flask, render_template, request
from faster_whisper import WhisperModel
import tempfile
import os
import time
import torch
import numpy as np
import requests
from tqdm import tqdm
from transformers import BertTokenizer
from model.multi_class_model import MultiClassModel # Adjust if needed
app = Flask(__name__)
# === CONFIG ===
# CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
# === FUNCTION TO DOWNLOAD CKPT IF NEEDED ===
def download_checkpoint_if_needed(url, save_path):
if not os.path.exists(save_path):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"📥 Downloading model checkpoint from {url}...")
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
total = int(response.headers.get("content-length", 0))
with open(save_path, 'wb') as f, tqdm(total=total, unit='B', unit_scale=True, desc="Downloading") as pbar:
for chunk in response.iter_content(1024):
f.write(chunk)
pbar.update(len(chunk))
print("✅ Checkpoint downloaded!")
else:
raise Exception(f"❌ Failed to download: {response.status_code}")
# === INITIAL SETUP: Download & Load Model ===
download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH)
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained('indolem/indobert-base-uncased')
# Load model from checkpoint
model = MultiClassModel.load_from_checkpoint(
CHECKPOINT_PATH,
n_out=4,
dropout=0.3,
lr=1e-5
)
model.eval()
# === INITIAL SETUP: Faster Whisper ===
# https://github.com/SYSTRAN/faster-whisper
# faster_whisper_model_size = "large-v3"
faster_whisper_model_size = "turbo"
# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
faster_whisper_model = WhisperModel(
faster_whisper_model_size,
device="cpu",
compute_type="int8"
)
def faster_whisper(temp_audio_path):
segments, info = faster_whisper_model.transcribe(
temp_audio_path,
language="id",
beam_size=1 # Lower beam_size, faster but may miss words
)
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
# for segment in segments:
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
return " ".join(segment.text for segment in segments)
def bert_predict(input_lyric):
encoding = tokenizer.encode_plus(
input_lyric,
add_special_tokens=True,
max_length=512,
return_token_type_ids=True,
padding="max_length",
return_attention_mask=True,
return_tensors='pt',
)
with torch.no_grad():
prediction = model(
encoding["input_ids"],
encoding["attention_mask"],
encoding["token_type_ids"]
)
logits = prediction
probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
predicted_class = np.argmax(probabilities)
predicted_label = AGE_LABELS[predicted_class]
prob_results = [(label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)]
return predicted_label, prob_results
# === ROUTES ===
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/transcribe', methods=['POST'])
def transcribe():
try:
# Load Whisper with Indonesian language support (large / turbo)
# https://github.com/openai/whisper
# whisper_model = whisper.load_model("large")
# Start measuring time
start_time = time.time()
audio_file = request.files['file']
if audio_file:
# Save uploaded audio to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_file.read())
temp_audio_path = temp_audio.name
# Step 1: Transcribe
transcribed_text = faster_whisper(temp_audio_path)
os.remove(temp_audio_path)
# Step 2: BERT Prediction
predicted_label, prob_results = bert_predict(transcribed_text)
# Stop timer
end_time = time.time()
total_time = end_time - start_time
formatted_time = f"{total_time:.2f} seconds"
return render_template(
'transcribe.html',
task=transcribed_text,
prediction=predicted_label,
probabilities=prob_results,
total_time=formatted_time
)
except Exception as e:
print("Error:", e)
return str(e)
@app.route('/predict-text', methods=['POST'])
def predict_text():
try:
user_lyrics = request.form.get('lyrics', '').strip()
if not user_lyrics:
return "No lyrics provided.", 400
# Start timer
start_time = time.time()
# Step 1: BERT Prediction
predicted_label, prob_results = bert_predict(user_lyrics)
# End timer
end_time = time.time()
total_time = f"{end_time - start_time:.2f} seconds"
return render_template(
'transcribe.html',
task=user_lyrics,
prediction=predicted_label,
probabilities=prob_results,
total_time=total_time
)
except Exception as e:
print("❌ Error in predict-text:", e)
return str(e), 500
if __name__ == "__main__":
app.run(debug=True)