flask_whisper / app.py
Michael Natanael
Change AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
aae98e8
from flask import (
Flask,
render_template,
request,
url_for,
redirect,
flash,
get_flashed_messages,
)
from flask_login import (
LoginManager,
login_user,
logout_user,
login_required,
current_user,
)
from flask_sqlalchemy import SQLAlchemy
from flask_login import UserMixin
from werkzeug.security import generate_password_hash, check_password_hash
from faster_whisper import WhisperModel
from groq import Groq
import tempfile
import os
import datetime
import time
import torch
import numpy as np
import requests
from tqdm import tqdm
from transformers import BertTokenizer
from model.multi_class_model import MultiClassModel
# from model.database import db, User
from sqlalchemy.exc import OperationalError
from sqlalchemy import inspect
app = Flask(__name__)
# === CONFIG ===
# CHECKPOINT_URL = "https://github.com/michael2002porto/bert_classification_indonesian_song_lyrics/releases/download/finetuned_checkpoints/original_split_synthesized.ckpt"
CHECKPOINT_URL = "https://huggingface.co/nenafem/original_split_synthesized/resolve/main/original_split_synthesized.ckpt?download=true"
CHECKPOINT_PATH = "final_checkpoint/original_split_synthesized.ckpt"
AGE_LABELS = ["semua usia", "anak", "remaja", "dewasa"]
DATABASE_URI = "postgresql://postgres.tcqmmongiztvqkxxebnc:[email protected]:6543/postgres"
# === CONNECT DATABASE ===
app.config["SQLALCHEMY_DATABASE_URI"] = DATABASE_URI
app.config["SECRET_KEY"] = "I1Nnj0H72Z3mXWcp"
# init extensions
db = SQLAlchemy(app)
login_manager = LoginManager(app)
login_manager.login_view = "login"
try:
db.session.execute("SELECT 1")
print("✅ Database connected successfully.")
except OperationalError as e:
print(f"❌ Database connection failed: {e}")
def show_schema_info():
inspector = inspect(db.engine)
# Get current schema (by default it's 'public' unless set explicitly)
current_schema = db.engine.url.database
all_schemas = inspector.get_schema_names()
public_tables = inspector.get_table_names(schema="public")
return {
"current_schema": current_schema,
"available_schemas": all_schemas,
"public_tables": public_tables,
}
class User(db.Model, UserMixin):
__tablename__ = "user"
id = db.Column(db.Integer, primary_key=True)
email = db.Column(db.String(255), nullable=False)
password = db.Column(db.String(255))
created_date = db.Column(db.DateTime, default=datetime.datetime.now())
history = db.relationship("History", backref="user", lazy=True)
class History(db.Model):
__tablename__ = "history"
id = db.Column(db.Integer, primary_key=True)
lyric = db.Column(db.Text, nullable=False)
predicted_label = db.Column(db.String(255), nullable=False)
children_prob = db.Column(db.Float)
adolescents_prob = db.Column(db.Float)
adults_prob = db.Column(db.Float)
all_ages_prob = db.Column(db.Float)
processing_time = db.Column(db.Float) # store duration in seconds
created_date = db.Column(db.DateTime, default=datetime.datetime.now)
speech_to_text = db.Column(db.Boolean)
user_id = db.Column(db.Integer, db.ForeignKey("user.id"))
# Load user for Flask-Login
@login_manager.user_loader
def load_user(user_id):
return User.query.get(int(user_id))
# === FUNCTION TO DOWNLOAD CKPT IF NEEDED ===
def download_checkpoint_if_needed(url, save_path):
if not os.path.exists(save_path):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
print(f"📥 Downloading model checkpoint from {url}...")
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
total = int(response.headers.get("content-length", 0))
with open(save_path, "wb") as f, tqdm(
total=total, unit="B", unit_scale=True, desc="Downloading"
) as pbar:
for chunk in response.iter_content(1024):
f.write(chunk)
pbar.update(len(chunk))
print("✅ Checkpoint downloaded!")
else:
raise Exception(f"❌ Failed to download: {response.status_code}")
# === INITIAL SETUP: Download & Load Model ===
print(show_schema_info())
download_checkpoint_if_needed(CHECKPOINT_URL, CHECKPOINT_PATH)
# Load groq
client = Groq(api_key="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")
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained("indolem/indobert-base-uncased")
# Load model from checkpoint
model = MultiClassModel.load_from_checkpoint(
CHECKPOINT_PATH, n_out=4, dropout=0.3, lr=1e-5
)
model.eval()
# === INITIAL SETUP: Faster Whisper ===
# https://github.com/SYSTRAN/faster-whisper
# faster_whisper_model_size = "large-v3"
faster_whisper_model_size = "turbo"
# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
faster_whisper_model = WhisperModel(
faster_whisper_model_size, device="cpu", compute_type="int8"
)
def faster_whisper(temp_audio_path):
segments, info = faster_whisper_model.transcribe(
temp_audio_path,
language="id",
beam_size=1, # Lower beam_size, faster but may miss words
)
print(
"Detected language '%s' with probability %f"
% (info.language, info.language_probability)
)
# for segment in segments:
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
return " ".join(segment.text for segment in segments)
def bert_predict(input_lyric):
encoding = tokenizer.encode_plus(
input_lyric,
add_special_tokens=True,
max_length=512,
truncation=True, # Ensures input ≤512 tokens
return_token_type_ids=True,
padding="max_length",
return_attention_mask=True,
return_tensors="pt",
)
with torch.no_grad():
prediction = model(
encoding["input_ids"],
encoding["attention_mask"],
encoding["token_type_ids"],
)
logits = prediction
probabilities = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
predicted_class = np.argmax(probabilities)
predicted_label = AGE_LABELS[predicted_class]
prob_results = [
(label, f"{prob:.4f}") for label, prob in zip(AGE_LABELS, probabilities)
]
return predicted_label, prob_results
# === ROUTES ===
@app.route("/", methods=["GET"])
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
try:
# Load Whisper with Indonesian language support (large / turbo)
# https://github.com/openai/whisper
# whisper_model = whisper.load_model("large")
# Start measuring time
start_time = time.time()
audio_file = request.files["file"]
if audio_file:
# Save uploaded audio to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_file.read())
temp_audio_path = temp_audio.name
# Step 1: Transcribe
# transcribed_text = faster_whisper(temp_audio_path).strip()
with open(temp_audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(temp_audio_path, file.read()),
model="whisper-large-v3",
prompt="Transkripsikan hanya bagian lirik lagu saja",
language="id",
response_format="verbose_json",
temperature=0,
)
transcribed_text = transcription.text.strip()
os.remove(temp_audio_path)
# Step 2: BERT Prediction
predicted_label, prob_results = bert_predict(transcribed_text)
# Stop timer
end_time = time.time()
total_time = end_time - start_time
formatted_time = f"{total_time:.2f} seconds"
# Insert log prediction
new_prediction_history = History(
lyric=transcribed_text,
predicted_label=predicted_label,
children_prob=prob_results[AGE_LABELS.index("anak")][1],
adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1],
adults_prob=prob_results[AGE_LABELS.index("dewasa")][1],
all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1],
processing_time=round(total_time, 2),
speech_to_text=True,
user_id=current_user.id if current_user.is_authenticated else None,
)
db.session.add(new_prediction_history)
db.session.commit()
return render_template(
"transcribe.html",
task=transcribed_text,
prediction=predicted_label,
probabilities=prob_results,
total_time=formatted_time,
)
except Exception as e:
print("Error:", e)
return str(e)
@app.route("/predict-text", methods=["POST"])
def predict_text():
try:
user_lyrics = request.form.get("lyrics", "").strip()
if not user_lyrics:
return "No lyrics provided.", 400
# Start timer
start_time = time.time()
# Step 1: BERT Prediction
predicted_label, prob_results = bert_predict(user_lyrics)
# End timer
end_time = time.time()
total_time = end_time - start_time
formatted_time = f"{total_time:.2f} seconds"
# Insert log prediction
new_prediction_history = History(
lyric=user_lyrics,
predicted_label=predicted_label,
children_prob=prob_results[AGE_LABELS.index("anak")][1],
adolescents_prob=prob_results[AGE_LABELS.index("remaja")][1],
adults_prob=prob_results[AGE_LABELS.index("dewasa")][1],
all_ages_prob=prob_results[AGE_LABELS.index("semua usia")][1],
processing_time=round(total_time, 2),
user_id=current_user.id if current_user.is_authenticated else None,
)
db.session.add(new_prediction_history)
db.session.commit()
return render_template(
"transcribe.html",
task=user_lyrics,
prediction=predicted_label,
probabilities=prob_results,
total_time=formatted_time,
)
except Exception as e:
print("❌ Error in predict-text:", e)
return str(e), 500
@app.route("/register", methods=["GET", "POST"])
def register():
if request.method == "POST":
email = request.form.get("email")
password = request.form.get("password")
confirm_password = request.form.get("confirm-password")
if User.query.filter_by(email=email).first():
return render_template(
"register.html",
error="Email already taken!",
email=email,
password=password,
confirm_password=confirm_password,
)
if password != confirm_password:
return render_template(
"register.html",
error="Password does not match!",
email=email,
password=password,
confirm_password=confirm_password,
)
hashed_password = generate_password_hash(password, method="pbkdf2:sha256")
new_user = User(email=email, password=hashed_password)
db.session.add(new_user)
db.session.commit()
flash(
"Sign up successful! Please log in.", "success"
) # Flash the success message
return redirect(url_for("login"))
return render_template("register.html")
@app.route("/login", methods=["GET", "POST"])
def login():
if request.method == "POST":
email = request.form.get("email")
password = request.form.get("password")
user = User.query.filter_by(email=email).first()
if user and check_password_hash(user.password, password):
login_user(user)
return dashboard(login_alert=True)
else:
return render_template("login.html", error="Invalid email or password")
return render_template("login.html")
def dashboard(login_alert=False):
if login_alert:
flash(current_user.email, "success")
return redirect(url_for("index"))
@app.route("/logout")
@login_required
def logout():
logout_user()
return redirect(url_for("login"))
@app.route("/history")
@login_required
def history():
data_history = (
History.query.filter_by(user_id=current_user.id)
.order_by(History.created_date.desc())
.all()
)
for item in data_history:
item.probabilities = [
("anak", f"{item.children_prob:.4f}"),
("remaja", f"{item.adolescents_prob:.4f}"),
("dewasa", f"{item.adults_prob:.4f}"),
("semua usia", f"{item.all_ages_prob:.4f}"),
]
return render_template("history.html", data_history=data_history)
if __name__ == "__main__":
app.run(debug=True)