Spaces:
Running
Running
import yfinance as yf | |
import pandas as pd | |
import plotly.graph_objects as go | |
import streamlit as st | |
import numpy as np | |
# Place input fields in the sidebar | |
sidebar = st.sidebar | |
symbol = sidebar.text_input("Enter stock symbol:", "AAPL") | |
period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"]) | |
# Download stock data | |
data = yf.download(symbol, period=period) | |
# Calculate Moving Averages | |
data['MA50'] = data['Close'].rolling(window=50).mean() | |
data['MA200'] = data['Close'].rolling(window=200).mean() | |
data['MA20'] = data['Close'].rolling(window=20).mean() | |
# Finding highest and lowest price for the Fibonacci Retracement Levels | |
high_price = data['High'].max() | |
low_price = data['Low'].min() | |
# Calculate Fibonacci Levels | |
fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1] | |
price_diff = high_price - low_price | |
data['Fib_Level_0'] = high_price | |
data['Fib_Level_1'] = high_price - price_diff * fib_levels[1] | |
data['Fib_Level_2'] = high_price - price_diff * fib_levels[2] | |
data['Fib_Level_3'] = high_price - price_diff * fib_levels[3] | |
data['Fib_Level_4'] = high_price - price_diff * fib_levels[4] | |
data['Fib_Level_5'] = high_price - price_diff * fib_levels[5] | |
data['Fib_Level_6'] = low_price | |
# Plotting | |
fig = go.Figure() | |
# Add traces for Close price and MAs | |
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green'))) | |
# Add traces for Fibonacci Levels | |
for i in range(7): | |
fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot'))) | |
# Display the chart | |
st.plotly_chart(fig) | |
# Note: This implementation assumes a simplistic approach to finding the high and low points for Fibonacci retracement levels. | |
# In practice, these should be determined based on significant peaks and troughs within a specific period of interest. | |