Spaces:
Sleeping
Sleeping
File size: 10,911 Bytes
28a736c 5aa3509 28a736c a8fa36d 28a736c 5aa3509 7579f1f 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 28a736c 5aa3509 70094a6 28a736c 5aa3509 7a543a2 a26b523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os,re
import gradio as gr
import nest_asyncio
from langchain import PromptTemplate
from llama_index.core import PromptTemplate, StorageContext, load_index_from_storage
from llama_index.llms.openai import OpenAI
import networkx as nx
from pyvis.network import Network
from IPython.display import HTML, Markdown, display
os.environ["OPENAI_API_KEY"] = os.getenv('oai')
#Graph-RAG
kg_index_path = "./telcom_full_property_kg_processed_dynamicpath2_withpackagedata_category/"
kg_plot_path = kg_index_path+"/full_kg.html"
graph_rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=kg_index_path)
)
#RAG
rag_index_path = "./telcom_RAG_full_withpackagedata_category/"
rag_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=rag_index_path)
)
teamplate_prompt_upsell = '''You are a virtual assistant for a telecom company, designed to assist users with their queries and potentially upsell services. Your task is to analyze the customer's data from context, their query, and offer the most appropriate assistance.
First, you will be given the customer's data context. This information will help you understand the customer's current plan and usage patterns:
When interacting with a customer, you will receive a query with their details like name or phone number.
<query>
{QUERY}
</query>
Analyze the query to determine the type of assistance required. Categorize it into one of the following:
1. Technical Support
2. Billing Inquiry
3. Plan Information
4. Service Upgrade
5. General Inquiry
Based on the query type and customer data, provide an appropriate response. Your response should:
1. Address the customer's immediate concern
2. Be clear and concise
3. Use a friendly and causal tone
4. Make sure to provide facts and relations for each response
5. Use Emojis to engage the customer in conversation
If the query presents an opportunity for upselling, consider recommending relevant services or upgrades based on the customer's current plan and usage patterns. However, ensure that your primary focus remains on resolving the customer's initial query.
Format your response as follows:
<response>
<query_type>[Categorized query type]</query_type>
<answer>[Your detailed response addressing the customer's query]</answer>
<reference>[Provide the reference documents used for generating the response]</reference>
<facts>[Provide the facts used for generating the response]</facts>
<upsell_opportunity>[If applicable, provide a brief upsell recommendation]</upsell_opportunity>
</response>
Remember to always prioritize customer satisfaction and only suggest upsells when they genuinely benefit the customer.
'''
llm_eval_prompt = """You are an AI tasked with evaluating the performance of a language model (LLM) based on a given query and response. Your role is to assess the LLM's output using four specific metrics and provide scores for each.
Here are the metrics you will use to evaluate the LLM's performance:
1. Comprehensiveness: How thoroughly and completely the response addresses all aspects of the query.
2. Diversity: The variety of perspectives, examples, or approaches included in the response.
3. Empowerment: How well the response enables the user to understand or act on the information provided.
4. Directness: The clarity and conciseness of the response in addressing the query.
To perform your evaluation, carefully analyze the following query and response:
<query>
{QUERY}
</query>
<response>
{RESPONSE}
</response>
For each metric, consider the following:
1. Comprehensiveness: Does the response cover all aspects of the query? Are there any missing or underdeveloped points?
2. Diversity: Does the response offer multiple viewpoints or examples? Is there a good range of information or approaches presented?
3. Empowerment: Does the response provide actionable information or insights? Does it enhance the user's understanding or ability to address the query?
4. Directness: Is the response clear and to the point? Does it avoid unnecessary information or tangents?
Score each metric on a scale from 0 to 5, where 0 is the lowest (poor performance) and 5 is the highest (excellent performance).
For each metric, provide a brief justification for your score before stating the score itself. Your justification should reference specific aspects of the query and response that influenced your decision.
Present your evaluation in the following format:
<evaluation>
<metric name="Comprehensiveness">
<justification>
[Your justification for the Comprehensiveness score]
</justification>
<score>[Your score from 0-5]</score>
</metric>
<metric name="Diversity">
<justification>
[Your justification for the Diversity score]
</justification>
<score>[Your score from 0-5]</score>
</metric>
<metric name="Empowerment">
<justification>
[Your justification for the Empowerment score]
</justification>
<score>[Your score from 0-5]</score>
</metric>
<metric name="Directness">
<justification>
[Your justification for the Directness score]
</justification>
<score>[Your score from 0-5]</score>
</metric>
</evaluation>
Ensure that your evaluation is fair, objective, and based solely on the provided query and response. Do not make assumptions about information not present in the given text.
"""
def extract_pattern_triplet(text):
# Define the regex pattern to match the desired format
pattern = re.compile(r'\b\w+\b\s*->\s*\b\w+\b\s*->\s*\b\w+\b')
# Find all matches in the text
matches = pattern.findall(text)
return "\n <br> ".join(matches)
def query_rag_qa(query,search_level):
"""
A function to query the RAG QA with a given query and search level.
It returns the response, nodes, and response metadata.
Parameters:
- query: The query to search for
- search_level: The level of similarity to search for
Return:
- response: The query response
- nodes: The retrieved nodes
- metadata: The metadata of the response
"""
myretriever = rag_index.as_retriever(
include_text=True, # include source text, default True
similarity_top_k=search_level,
)
query_engine = rag_index.as_query_engine(
sub_retrievers=[
myretriever,
],
include_text=True,
similarity_top_k=search_level,
)
response = query_engine.query(query)
nodes = myretriever.retrieve(query)
return response, nodes, response.metadata
def query_graph_rag_qa(query,search_level):
"""
A function to query the RAG QA with a given query and search level.
It returns the response, reference, and reference text.
Parameters:
- query: The query to search for
- search_level: The level of similarity to search for
Return:
- response: The query response
- reference: The extracted patterns
- reference_text: The text of the extracted patterns
"""
myretriever = graph_rag_index.as_retriever(
include_text=True, # include source text, default True
similarity_top_k=search_level,
)
query_engine = graph_rag_index.as_query_engine(
sub_retrievers=[
myretriever,
],
include_text=True,
similarity_top_k=search_level,
)
response = query_engine.query(query)
nodes = myretriever.retrieve(query)
# parsed_resp = parse_response_with_regex(str(response))
reference = []
reference_text = []
for node in nodes:
reference.append(extract_pattern_triplet(node.text))
reference_text.append(node.text)
return response, reference , reference_text
def query_tqa(query,search_level):
grag_response, grag_reference , grag_reference_text = query_graph_rag_qa(query,search_level)
rag_response, rag_reference, rag_reference_text = query_rag_qa(query,search_level)
return grag_response, grag_reference , grag_reference_text, rag_response, rag_reference, rag_reference_text
def eval_llm(query,rag_response,grag_response):
data = {'QUERY': query,
'RESPONSE': rag_response
}
prompt = PromptTemplate(llm_eval_prompt)
query_ready = prompt.format(**data)
rag_eval = OpenAI().complete(query_ready)
data = {'QUERY': query,
'RESPONSE': grag_response
}
prompt = PromptTemplate(llm_eval_prompt)
query_ready = prompt.format(**data)
grag_eval = OpenAI().complete(query_ready)
return grag_eval,rag_eval
def plot_full_kg():
"""Plot the full knowledge graph and return the HTML representation."""
# return HTML(filename=kg_plot_path)
with open(kg_plot_path, "r") as file:
return file.read()
with gr.Blocks() as demo:
gr.Markdown("<h1>Telcom Graph-RAG v0.1</h1>")
with gr.Tab("Virtual Assistant"):
with gr.Row():
query_input = gr.Textbox(label="Input Your Query..")
search_level = gr.Slider(minimum=1, maximum=50, value=3, step=5, label="Search level")
ask_button = gr.Button("Ask TelcomVA!!")
with gr.Row():
with gr.Accordion("Graph-RAG!", open=True):
grag_output = gr.Textbox(label="Response")
grag_reference = gr.Textbox(label="Triplets")
grag_reference_text = gr.Textbox(label="Extracted Reference raw")
with gr.Accordion("RAG", open=True):
rag_output = gr.Textbox(label="Response")
rag_reference = gr.Textbox(label="Extracted Reference")
rag_reference_text = gr.Textbox(label="Extracted Reference raw")
with gr.Row():
grag_performance = gr.Textbox(label="Graph-RAG Performance")
rag_performance = gr.Textbox(label="RAG Performance")
eval_button = gr.Button("Evaluate LLMs!!")
with gr.Accordion("Explore KG!", open=False):
kg_output = gr.HTML()
plot_button = gr.Button("Plot Full KG!!")
ask_button.click(query_tqa,
inputs=[query_input,search_level],
outputs=[
grag_output,
grag_reference,
grag_reference_text,
rag_output,
rag_reference,
rag_reference_text
]
)
eval_button.click(eval_llm,
inputs=[query_input,rag_output,grag_output],
outputs=[
grag_performance,
rag_performance
]
)
plot_button.click(plot_full_kg, outputs=kg_output)
examples = gr.Examples(
examples=[
["what are the upselling ideas for roaming package you can recommend for customer Rina Wati."],
],
inputs=[query_input]
)
demo.launch(auth=(os.getenv('id'), os.getenv('pass')), share=True)
# demo.launch(share=False)
|