Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.llms import HuggingFacePipeline | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from langchain.schema import Document | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.vectorstores import Chroma | |
from transformers import TextStreamer | |
from langchain.llms import HuggingFacePipeline | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.llms import HuggingFaceHub | |
import os | |
import pandas as pd | |
from langchain.vectorstores import FAISS | |
import subprocess | |
from langchain_community.llms import HuggingFaceHub | |
import pandas as pd | |
# Configuración del modelo | |
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
model_name = "google/gemma-2-2b" | |
TOKEN=os.getenv('HF_TOKEN') | |
subprocess.run(["huggingface-cli", "login", "--token", TOKEN, "--add-to-git-credential"]) | |
###### | |
# set this key as an environment variable | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"] | |
# Initialize tokenizer | |
def load_model(): | |
# MODEL_NAME= "lmsys/vicuna-7b-v1.5" | |
MODEL_NAME = "google/gemma-2b-it" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
quantization_config=nf4_config, # add config | |
torch_dtype=torch.bfloat16, # save memory using float16 | |
# low_cpu_mem_usage=True, | |
token=get_hg_token(), | |
).to("cuda") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model_pipeline = pipeline( | |
'text-generation', | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=1024, # output token | |
device_map="auto" # auto allocate GPU if available | |
) | |
return HuggingFacePipeline(pipeline=model_pipeline) | |
# Initialize embeddings | |
def load_embeddings(): | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/bkai-foundation-models/vietnamese-bi-encoder') | |
# embeddings = OpenAIEmbeddings() | |
return embeddings | |
# Chroma Vector store | |
def setup_vector(): | |
chunks = [] | |
df = pd.read_excel(r"chunk_metadata_template.xlsx") | |
for _, row in df.iterrows(): | |
chunk_with_metadata = Document( | |
page_content=row['page_content'], | |
metadata={ | |
'chunk_id': row['chunk_id'], | |
'document_title': row['document_title'], | |
} | |
) | |
chunks.append(chunk_with_metadata) | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/bkai-foundation-models/vietnamese-bi-encoder') | |
return Chroma.from_documents(chunks, embedding=embeddings) | |
# Set up chain | |
def setup_conversation_chain(): | |
llm = load_model() | |
vector = setup_vector() | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
template = """Bạn là một chuyên viên tư vấn cho khách hàng về sản phẩm bảo hiểm của công ty MB Ageas Life tại Việt Nam. | |
Hãy trả lời chuyên nghiệp, chính xác, cung cấp thông tin trước rồi hỏi câu tiếp theo. Tất cả các thông tin cung cấp đều trong phạm vi MBAL. Khi có đủ thông tin khách hàng thì mới mời khách hàng đăng ký để nhận tư vấn trên https://www.mbageas.life/ | |
{context} | |
Câu hỏi: {question} | |
Trả lời:""" | |
# PROMPT = ChatPromptTemplate.from_template(template=template) | |
# chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=vector.as_retriever(search_kwargs={'k': 5}), | |
# memory=memory, | |
# combine_docs_chain_kwargs={"prompt": PROMPT} | |
# # condense_question_prompt=CUSTOM_QUESTION_PROMPT | |
) | |
chain = ( | |
{"context": vector.as_retriever(search_kwargs={'k': 5}) | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| parser | |
) | |
return chain | |
# Streamlit | |
def main(): | |
st.title("🛡️ MBAL Chatbot 🛡️") | |
# Inicializar la cadena de conversación | |
if 'conversation_chain' not in st.session_state: | |
st.session_state.conversation_chain = setup_conversation_chain() | |
# Mostrar mensajes del chat | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Campo de entrada para el usuario | |
if prompt := st.chat_input("Bạn cần tư vấn về điều gì? Hãy chia sẻ nhu cầu và thông tin của bạn nhé!"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
# Generar respuesta | |
response = st.session_state.conversation_chain({"question": prompt, "chat_history": []}) | |
full_response = response['answer'] | |
# full_response = response.get("answer", "No response generated.") | |
message_placeholder.markdown(full_response) | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
# if __name__ == "__main__": | |
main() |