Spaces:
Running
Running
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
import os | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import time | |
import streamlit as st | |
import os | |
st.set_page_config(page_title="MBAL CHATBOT") | |
col1, col2, col3 = st.columns([1,2,1]) | |
st.sidebar.title("Welcome to MBAL Chatbot") | |
st.markdown( | |
""" | |
<style> | |
div.stButton > button:first-child { | |
background-color: #ffd0d0; | |
} | |
div.stButton > button:active { | |
background-color: #ff6262; | |
} | |
.st-emotion-cache-6qob1r { | |
position: relative; | |
height: 100%; | |
width: 100%; | |
background-color: black; | |
overflow: overlay; | |
} | |
div[data-testid="stStatusWidget"] div button { | |
display: none; | |
} | |
.reportview-container { | |
margin-top: -2em; | |
} | |
#MainMenu {visibility: hidden;} | |
.stDeployButton {display:none;} | |
footer {visibility: hidden;} | |
#stDecoration {display:none;} | |
button[title="View fullscreen"]{ | |
visibility: hidden;} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
def reset_conversation(): | |
st.session_state.messages = [] | |
st.session_state.memory.clear() | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True) | |
embeddings = HuggingFaceEmbeddings(model_name="bkai-foundation-models/vietnamese-bi-encoder", model_kwargs={"trust_remote_code": True}) | |
db = FAISS.load_local("mbal_faiss_db", embeddings,allow_dangerous_deserialization= True) | |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4}) | |
prompt_template = """<s> | |
{context} | |
CHAT HISTORY: {chat_history}[/INST] | |
ASSISTANT: | |
</s> | |
""" | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=['question', 'context', 'chat_history']) | |
llm = ChatGroq(temperature = 0.5,groq_api_key=os.environ["GROQ_API_KEY"],model_name="llama3-7b") | |
# Create a conversational chain using only your database retriever | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
memory=st.session_state.memory, | |
retriever=db_retriever, | |
combine_docs_chain_kwargs={'prompt': prompt} | |
) | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
input_prompt = st.chat_input("Say something") | |
if input_prompt: | |
with st.chat_message("user"): | |
st.write(input_prompt) | |
st.session_state.messages.append({"role":"user","content":input_prompt}) | |
with st.chat_message("assistant"): | |
with st.status("Lifting data, one bit at a time 💡...",expanded=True): | |
result = qa.invoke(input=input_prompt) | |
message_placeholder = st.empty() | |
full_response = "⚠️ **_Note: Information provided may be inaccurate._** \n\n\n" | |
for chunk in result["answer"]: | |
full_response+=chunk | |
time.sleep(0.02) | |
message_placeholder.markdown(full_response+" ▌") | |
st.button('Reset All Chat 🗑️', on_click=reset_conversation) | |
st.session_state.messages.append({"role":"assistant","content":result["answer"]}) |