nickmuchi's picture
Update app.py
690413e
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from PIL import Image
import cv2
import os
import numpy as np
def extract_face(im):
prototxt_path = 'deploy.prototxt'
caffemodel_path = 'weights.caffemodel'
# Read the model
cv2_model = cv2.dnn.readNetFromCaffe(prototxt_path, caffemodel_path)
#pil_image = PIL.Image.open('image.jpg')
image = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2BGR)
#image = cv2.imread(im)
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
cv2_model.setInput(blob)
detections = cv2_model.forward()
# Identify each face
for i in range(0, detections.shape[2]):
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
confidence = detections[0, 0, i, 2]
# If confidence > 0.5, save it as a separate file
if (confidence > 0.5):
frame = image[startY:endY, startX:endX]
#PIL_image = Image.fromarray(frame)
file_name = 'faces/' + str(np.random.randint(1,10)) + '_' + 'face.png'
cv2.imwrite(file_name, frame)
return file_name
def predict(im1, im2,thresh,model_name):
if not isinstance(im1,str):
im1_face = im1
im2_face = im2
else:
im1_face = Image.open(im1)
im2_face = Image.open(im2)
model = load_model(model_name)
sim=cosine_similarity(model.encode([im1_face,im2_face]))[0][1]
if sim > thresh:
return round(sim,2), "SAME PERSON, UNLOCK PHONE"
else:
return round(sim,2), "DIFFERENT PEOPLE, DON'T UNLOCK"
def load_model(model_name):
model = SentenceTransformer(model_name)
return model
title = """<h1 id="title">FaceID for Facial Recognition with Face Detector</h1>"""
models = ['clip-ViT-B-16','clip-ViT-B-32','clip-ViT-L-14']
twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(twitter_link)
model_options = gr.Dropdown(choices=models,label='Embedding Models',value=models[-1],show_label=True)
thresh = gr.Slider(minimum=0.5,maximum=1,value=0.85,step=0.1,label='Confidence')
with gr.Tabs():
with gr.TabItem("Face ID with No Face Detection"):
with gr.Row():
with gr.Column():
nd_image_input_1 = gr.Image(label='Image 1',type='pil',source='webcam')
nd_image_input_2 = gr.Image(label='Image 2',type='pil',source='webcam')
with gr.Column():
sim = gr.Number(label="Similarity")
msg = gr.Textbox(label="Message")
nd_but = gr.Button('Verify')
with gr.TabItem("Face ID with Face Detector"):
with gr.Row():
with gr.Column():
fd_image_1 = gr.Image(label='Image 1',type='pil',source='webcam')
fd_image_2 = gr.Image(label='Image 2',type='pil',source='webcam')
with gr.Column():
face_1 = gr.Image(label='Face Detected 1',type='filepath')
face_2 = gr.Image(label='Face Detected 2',type='filepath')
fd_image_1.change(extract_face,fd_image_1,face_1)
fd_image_2.change(extract_face,fd_image_2,face_2)
with gr.Row():
with gr.Column():
sim_1 = gr.Number(label="Similarity")
msg_1 = gr.Textbox(label="Message")
fd_but = gr.Button('Verify')
nd_but.click(predict,inputs=[nd_image_input_1,nd_image_input_2,thresh,model_options],outputs=[sim,msg],queue=True)
fd_but.click(predict,inputs=[face_1,face_2,thresh,model_options],outputs=[sim_1,msg_1],queue=True)
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-faceId-corise-project)")
demo.launch(debug=True,enable_queue=True)