nielsr's picture
nielsr HF Staff
Create app.py
8cf56d2
raw
history blame
2.05 kB
import gradio as gr
import requests
from PIL import Image
import os
import torch
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
def enhance(image):
# prepare image for the model
inputs = processor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# postprocess
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output)
title = "Swin2SR demo for Image Super-Resolution πŸš€πŸš€πŸ”₯"
description = '''
**This Demo expects low-quality and low-resolution JPEG compressed images, in the near future we will support any kind of input**
**We are looking for collaborators! Collaboratorλ₯Ό μ°Ύκ³  μžˆμŠ΅λ‹ˆλ‹€!** πŸ‡¬πŸ‡§ πŸ‡ͺπŸ‡Έ πŸ‡°πŸ‡· πŸ‡«πŸ‡· πŸ‡·πŸ‡΄ πŸ‡©πŸ‡ͺ πŸ‡¨πŸ‡³
**Please check our github project: https://github.com/mv-lab/swin2sr or paper: https://arxiv.org/abs/2209.11345 feel free to contact us**
**Demos also available at [google colab](https://colab.research.google.com/drive/1paPrt62ydwLv2U2eZqfcFsePI4X4WRR1?usp=sharing) and [Kaggle](https://www.kaggle.com/code/jesucristo/super-resolution-demo-swin2sr-official/)**
</br>
'''
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
gr.Interface(
enhance,
gr.inputs.Image(type="pil", label="Input").style(height=260),
gr.inputs.Image(type="pil", label="Ouput").style(height=240),
title=title,
description=description,
article=article,
).launch(enable_queue=True)