flask-docker / clip.py
ning8429's picture
Update clip.py
82e2346 verified
raw
history blame
2.49 kB
import os
import torch
from PIL import Image
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
def clip_result(image_path):
# 設置設備
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get the directory where this script is located
script_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the full path to the file in the subfolder
model_path = os.path.join(script_dir, 'artifacts/models', 'best_clip_model.pth')
print("model_path:", model_path)
# 載入訓練好的模型和處理器
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
model.load_state_dict(torch.load(model_path, map_location=device))
model = model.to(device)
model.eval()
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
# 1. 加載圖片
# image_path = '/content/drive/MyDrive/幽靈吉伊卡哇.png'
image = Image.open(image_path)
# 2. 加載中文詞彙表
with open('./chiikawa/word_list.txt', 'r', encoding='utf-8') as f:
vocab = [line.strip() for line in f.readlines()]
# 3. 圖像和文本處理
batch_size = 16 # 每次處理16個詞彙
similarities = []
# 釋放未使用的顯存
torch.cuda.empty_cache()
with torch.no_grad():
for i in range(0, len(vocab), batch_size):
batch_vocab = vocab[i:i + batch_size]
inputs = processor(
text=batch_vocab,
images=image,
return_tensors="pt",
padding=True
).to(device)
# 推理並進行相似度計算
outputs = model(**inputs)
image_embeds = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True)
text_embeds = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True)
similarity = torch.matmul(image_embeds, text_embeds.T).squeeze(0)
similarities.append(similarity)
# 4. 合併所有相似度
similarity = torch.cat(similarities, dim=0)
# 5. 找到相似度最高的詞彙
top_k = 3
top_k_indices = torch.topk(similarity, top_k).indices.tolist()
top_k_words = [vocab[idx] for idx in top_k_indices]
# 6. 輸出最接近的前3名中文詞彙
# print("最接近的前3名中文詞彙是:")
# for rank, word in enumerate(top_k_words, 1):
# print(f"{rank}. {word}")
return top_k_words