Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +8 -3
api_server.py
CHANGED
@@ -13,7 +13,7 @@ from tensorflow import keras
|
|
13 |
from flask import Flask, jsonify, request, render_template, send_file
|
14 |
import torch
|
15 |
from collections import Counter
|
16 |
-
from
|
17 |
|
18 |
# Disable tensorflow warnings
|
19 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
@@ -76,6 +76,8 @@ def get_jpg_files(path):
|
|
76 |
|
77 |
# Initialize the Flask application
|
78 |
app = Flask(__name__)
|
|
|
|
|
79 |
|
80 |
|
81 |
# API route for prediction(YOLO)
|
@@ -126,11 +128,14 @@ def predict():
|
|
126 |
yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
127 |
yolo_file = get_jpg_files(yolo_path)
|
128 |
|
|
|
|
|
129 |
element_list.append(element)
|
130 |
|
131 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
132 |
-
top_k_words.append(clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
133 |
encoded_images.append(image_to_base64(yolo_img))
|
|
|
134 |
|
135 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
136 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
@@ -162,7 +167,7 @@ def predict():
|
|
162 |
# }
|
163 |
|
164 |
return jsonify(response_data)
|
165 |
-
|
166 |
# for label_name in label_names:
|
167 |
# yolo_file=f"{YOLO_DIR}/{message_id}/{label_name}/im.jpg.jpg"
|
168 |
# # 將圖片轉換為 base64 編碼
|
|
|
13 |
from flask import Flask, jsonify, request, render_template, send_file
|
14 |
import torch
|
15 |
from collections import Counter
|
16 |
+
from clip_model import ClipModel
|
17 |
|
18 |
# Disable tensorflow warnings
|
19 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
76 |
|
77 |
# Initialize the Flask application
|
78 |
app = Flask(__name__)
|
79 |
+
# Initialize the ClipModel at the start
|
80 |
+
clip_model = ClipModel()
|
81 |
|
82 |
|
83 |
# API route for prediction(YOLO)
|
|
|
128 |
yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
129 |
yolo_file = get_jpg_files(yolo_path)
|
130 |
|
131 |
+
print(yolo_path)
|
132 |
+
|
133 |
element_list.append(element)
|
134 |
|
135 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
136 |
+
top_k_words.append(clip_model.clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
137 |
encoded_images.append(image_to_base64(yolo_img))
|
138 |
+
print(top_k_words)
|
139 |
|
140 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
141 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
|
|
167 |
# }
|
168 |
|
169 |
return jsonify(response_data)
|
170 |
+
|
171 |
# for label_name in label_names:
|
172 |
# yolo_file=f"{YOLO_DIR}/{message_id}/{label_name}/im.jpg.jpg"
|
173 |
# # 將圖片轉換為 base64 編碼
|