nivashuggingface's picture
Upload README.md with huggingface_hub
7c02998 verified
|
raw
history blame
1.79 kB

AI Model Training Project

This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.

Project Structure

.
β”œβ”€β”€ data/                  # Dataset storage
β”œβ”€β”€ models/               # Saved model files
β”œβ”€β”€ src/                  # Source code
β”‚   β”œβ”€β”€ data_preparation.py
β”‚   β”œβ”€β”€ model.py
β”‚   β”œβ”€β”€ training.py
β”‚   β”œβ”€β”€ evaluation.py
β”‚   └── deployment.py
β”œβ”€β”€ notebooks/           # Jupyter notebooks for exploration
β”œβ”€β”€ requirements.txt     # Project dependencies
└── README.md           # Project documentation

Setup Instructions

  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the training pipeline:
python src/training.py

Project Features

  • Custom CNN architecture for robust digit recognition
  • Data augmentation techniques
  • Model evaluation and hyperparameter tuning
  • Model deployment pipeline
  • Performance monitoring

Learning Concepts Covered

  1. Data Preprocessing

    • Data loading and cleaning
    • Feature engineering
    • Data augmentation
  2. Model Architecture

    • Custom CNN design
    • Layer configuration
    • Activation functions
  3. Training Process

    • Loss functions
    • Optimizers
    • Learning rate scheduling
    • Early stopping
  4. Evaluation

    • Metrics calculation
    • Cross-validation
    • Model comparison
  5. Deployment

    • Model saving
    • Inference pipeline
    • Performance monitoring