File size: 8,733 Bytes
144e206 6aa1b23 144e206 4fa7ebc 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 144e206 6aa1b23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
from comet_ml import Experiment # Comet ML is imported, but not used in the exact same way for caching
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("7-Persian Named Entity Recognition Web App", divider="red")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the 7-Persian Named Entity Recognition Web App**")
expander.write('''
**Named Entities:** This 7-Persian Named Entity Recognition Web App predicts seven (7) labels (“person”, “location”, “money”, “organization”, “date”, “percent value”, “time”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags. Please check and adjust the language settings in your computer, so the Persian characters are handled properly in your downloaded file.
**How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** Unlimited number of Result requests.
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NLP Web Apps", divider="red")
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary")
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
else:
comet_initialized = False
st.warning("Comet ML not initialized. Check environment variables.")
# --- Caching the model with st.cache_resource ---
@st.cache_resource
def load_ner_model():
return pipeline("token-classification", model="HooshvareLab/bert-fa-base-uncased-ner-peyma", aggregation_strategy="max")
# Load the model using the cached function
model = load_ner_model()
# --- End Caching ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)
def clear_text():
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
st.divider()
if st.button("Results"):
if not text.strip(): # Add a check for empty input
st.warning("Please enter some text to process.")
else:
with st.spinner("Wait for it...", show_time=True):
# No need for time.sleep(5) here unless it's for artificial delay
# The model is already loaded thanks to st.cache_resource
text1 = model(text)
df1 = pd.DataFrame(text1)
pattern = r'[^\w\s]'
df1['word'] = df1['word'].replace(pattern, '', regex=True)
df2 = df1.replace('', 'Unknown')
df = df2.dropna()
# Initialize Comet ML experiment here, as it's per-run
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
**What does B and I mean in front of each entity_group?**
Supposing that there are two words (word A, word B).
**B** indicates that word A is the beginning of an entity_group and **I** indicates that word B is inside that entity_group.
For example, **Los** is the beginning of the entity_group **Location** and **Angeles** is inside the entity_group **Location**.
Los (B-LOC) - Beginning of the entity_group **Location**
Angeles (I-LOC) - Inside the entity_group **Location**
''')
if df is not None and not df.empty: # Added check for empty DataFrame
fig = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
values='score', color='entity_group')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.subheader("Tree map", divider="red")
st.plotly_chart(fig)
if comet_initialized:
experiment.log_figure(figure=fig, figure_name="entity_treemap")
if df is not None and not df.empty: # Added check for empty DataFrame
value_counts1 = df['entity_group'].value_counts()
df1 = pd.DataFrame(value_counts1)
final_df = df1.reset_index().rename(columns={"index": "entity_group"})
col1, col2 = st.columns(2)
with col1:
fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.subheader("Pie Chart", divider="red")
st.plotly_chart(fig1)
if comet_initialized:
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
with col2:
fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
st.subheader("Bar Chart", divider="red")
st.plotly_chart(fig2)
if comet_initialized:
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
dfa = pd.DataFrame(
data={
'word': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'entity_group': ['label (tag) assigned to a given extracted entity'],
'start': ['index of the start of the corresponding entity'],
'end': ['index of the end of the corresponding entity'],
})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end()
|