File size: 8,733 Bytes
144e206
 
 
 
 
 
 
 
 
6aa1b23
144e206
4fa7ebc
 
6aa1b23
 
144e206
 
 
6aa1b23
 
 
 
 
 
 
 
144e206
 
 
 
6aa1b23
 
144e206
 
 
 
 
 
 
 
 
 
 
6aa1b23
 
 
144e206
6aa1b23
 
 
 
 
144e206
 
 
 
 
 
 
 
 
 
 
6aa1b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e206
6aa1b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e206
6aa1b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e206
6aa1b23
144e206
6aa1b23
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
from comet_ml import Experiment # Comet ML is imported, but not used in the exact same way for caching

st.set_page_config(layout="wide", page_title="Named Entity Recognition App")

st.subheader("7-Persian Named Entity Recognition Web App", divider="red")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")

expander = st.expander("**Important notes on the 7-Persian Named Entity Recognition Web App**")
expander.write('''
        **Named Entities:** This 7-Persian Named Entity Recognition Web App predicts seven (7) labels (“person”, “location”, “money”, “organization”, “date”, “percent value”, “time”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.    Please check and adjust the language settings in your computer, so the Persian characters are handled properly in your downloaded file.
        **How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
        **Usage Limits:** Unlimited number of Result requests.
        
        **Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
        **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
        For any errors or inquiries, please contact us at [email protected]
    ''')

with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    st.subheader("Related NLP Web Apps", divider="red")
    st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary")

COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")

if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True
else:
    comet_initialized = False
    st.warning("Comet ML not initialized. Check environment variables.")

# --- Caching the model with st.cache_resource ---
@st.cache_resource
def load_ner_model():
    
    return pipeline("token-classification", model="HooshvareLab/bert-fa-base-uncased-ner-peyma", aggregation_strategy="max")

# Load the model using the cached function
model = load_ner_model()
# --- End Caching ---

text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)

def clear_text():
    st.session_state['my_text_area'] = ""

st.button("Clear text", on_click=clear_text)
st.divider()

if st.button("Results"):
    if not text.strip(): # Add a check for empty input
        st.warning("Please enter some text to process.")
    else:
        with st.spinner("Wait for it...", show_time=True):
            # No need for time.sleep(5) here unless it's for artificial delay
            # The model is already loaded thanks to st.cache_resource
            text1 = model(text)

            df1 = pd.DataFrame(text1)
            pattern = r'[^\w\s]'
            df1['word'] = df1['word'].replace(pattern, '', regex=True)
            df2 = df1.replace('', 'Unknown')
            df = df2.dropna()

            # Initialize Comet ML experiment here, as it's per-run
            if comet_initialized:
                experiment = Experiment(
                    api_key=COMET_API_KEY,
                    workspace=COMET_WORKSPACE,
                    project_name=COMET_PROJECT_NAME,
                )
                experiment.log_parameter("input_text", text)
                experiment.log_table("predicted_entities", df)

            properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
            df_styled = df.style.set_properties(**properties)
            st.dataframe(df_styled)

            with st.expander("See Glossary of tags"):
                st.write('''
                '**word**': ['entity extracted from your text data']
                '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
                '**entity_group**': ['label (tag) assigned to a given extracted entity']
                '**start**': ['index of the start of the corresponding entity']
                '**end**': ['index of the end of the corresponding entity']
                **What does B and I mean in front of each entity_group?**
                Supposing that there are two words (word A, word B).
                **B** indicates that word A is the beginning of an entity_group and **I** indicates that word B is inside that entity_group.
                For example, **Los** is the beginning of the entity_group **Location** and **Angeles** is inside the entity_group **Location**.
                Los (B-LOC) - Beginning of the entity_group **Location**
                Angeles (I-LOC) - Inside the entity_group **Location**
                ''')

            if df is not None and not df.empty: # Added check for empty DataFrame
                fig = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
                                     values='score', color='entity_group')
                fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                st.subheader("Tree map", divider="red")
                st.plotly_chart(fig)
                if comet_initialized:
                    experiment.log_figure(figure=fig, figure_name="entity_treemap")

            if df is not None and not df.empty: # Added check for empty DataFrame
                value_counts1 = df['entity_group'].value_counts()
                df1 = pd.DataFrame(value_counts1)
                final_df = df1.reset_index().rename(columns={"index": "entity_group"})
                col1, col2 = st.columns(2)
                with col1:
                    fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
                    fig1.update_traces(textposition='inside', textinfo='percent+label')
                    st.subheader("Pie Chart", divider="red")
                    st.plotly_chart(fig1)
                    if comet_initialized:
                        experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
                with col2:
                    fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
                    st.subheader("Bar Chart", divider="red")
                    st.plotly_chart(fig2)
                    if comet_initialized:
                        experiment.log_figure(figure=fig2, figure_name="label_bar_chart")

            dfa = pd.DataFrame(
                data={
                    'word': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'entity_group': ['label (tag) assigned to a given extracted entity'],
                    'start': ['index of the start of the corresponding entity'],
                    'end': ['index of the end of the corresponding entity'],
                    })
            buf = io.BytesIO()
            with zipfile.ZipFile(buf, "w") as myzip:
                myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))

            with stylable_container(
                key="download_button",
                css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
            ):
                st.download_button(
                    label="Download zip file",
                    data=buf.getvalue(),
                    file_name="zip file.zip",
                    mime="application/zip",
                )
                if comet_initialized:
                    experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")

            st.divider()
            if comet_initialized:
                experiment.end()