|
import streamlit as st |
|
import time |
|
import pandas as pd |
|
import io |
|
from transformers import pipeline |
|
from streamlit_extras.stylable_container import stylable_container |
|
import plotly.express as px |
|
import zipfile |
|
import os |
|
from comet_ml import Experiment |
|
|
|
st.set_page_config(layout="wide", page_title="Named Entity Recognition App") |
|
|
|
st.subheader("7-Persian Named Entity Recognition Web App", divider="red") |
|
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") |
|
|
|
expander = st.expander("**Important notes on the 7-Persian Named Entity Recognition Web App**") |
|
expander.write(''' |
|
**Named Entities:** This 7-Persian Named Entity Recognition Web App predicts seven (7) labels (“person”, “location”, “money”, “organization”, “date”, “percent value”, “time”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags. Please check and adjust the language settings in your computer, so the Persian characters are handled properly in your downloaded file. |
|
**How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data. |
|
**Usage Limits:** Unlimited number of Result requests. |
|
|
|
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts. |
|
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. |
|
For any errors or inquiries, please contact us at [email protected] |
|
''') |
|
|
|
with st.sidebar: |
|
container = st.container(border=True) |
|
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.") |
|
st.subheader("Related NLP Web Apps", divider="red") |
|
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary") |
|
|
|
COMET_API_KEY = os.environ.get("COMET_API_KEY") |
|
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") |
|
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") |
|
|
|
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME: |
|
comet_initialized = True |
|
else: |
|
comet_initialized = False |
|
st.warning("Comet ML not initialized. Check environment variables.") |
|
|
|
|
|
@st.cache_resource |
|
def load_ner_model(): |
|
|
|
return pipeline("token-classification", model="HooshvareLab/bert-fa-base-uncased-ner-peyma", aggregation_strategy="max") |
|
|
|
|
|
model = load_ner_model() |
|
|
|
|
|
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area') |
|
st.write("**Input text**: ", text) |
|
|
|
def clear_text(): |
|
st.session_state['my_text_area'] = "" |
|
|
|
st.button("Clear text", on_click=clear_text) |
|
st.divider() |
|
|
|
if st.button("Results"): |
|
if not text.strip(): |
|
st.warning("Please enter some text to process.") |
|
else: |
|
with st.spinner("Wait for it...", show_time=True): |
|
|
|
|
|
text1 = model(text) |
|
|
|
df1 = pd.DataFrame(text1) |
|
pattern = r'[^\w\s]' |
|
df1['word'] = df1['word'].replace(pattern, '', regex=True) |
|
df2 = df1.replace('', 'Unknown') |
|
df = df2.dropna() |
|
|
|
|
|
if comet_initialized: |
|
experiment = Experiment( |
|
api_key=COMET_API_KEY, |
|
workspace=COMET_WORKSPACE, |
|
project_name=COMET_PROJECT_NAME, |
|
) |
|
experiment.log_parameter("input_text", text) |
|
experiment.log_table("predicted_entities", df) |
|
|
|
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"} |
|
df_styled = df.style.set_properties(**properties) |
|
st.dataframe(df_styled) |
|
|
|
with st.expander("See Glossary of tags"): |
|
st.write(''' |
|
'**word**': ['entity extracted from your text data'] |
|
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity'] |
|
'**entity_group**': ['label (tag) assigned to a given extracted entity'] |
|
'**start**': ['index of the start of the corresponding entity'] |
|
'**end**': ['index of the end of the corresponding entity'] |
|
**What does B and I mean in front of each entity_group?** |
|
Supposing that there are two words (word A, word B). |
|
**B** indicates that word A is the beginning of an entity_group and **I** indicates that word B is inside that entity_group. |
|
For example, **Los** is the beginning of the entity_group **Location** and **Angeles** is inside the entity_group **Location**. |
|
Los (B-LOC) - Beginning of the entity_group **Location** |
|
Angeles (I-LOC) - Inside the entity_group **Location** |
|
''') |
|
|
|
if df is not None and not df.empty: |
|
fig = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'], |
|
values='score', color='entity_group') |
|
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25)) |
|
st.subheader("Tree map", divider="red") |
|
st.plotly_chart(fig) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig, figure_name="entity_treemap") |
|
|
|
if df is not None and not df.empty: |
|
value_counts1 = df['entity_group'].value_counts() |
|
df1 = pd.DataFrame(value_counts1) |
|
final_df = df1.reset_index().rename(columns={"index": "entity_group"}) |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels') |
|
fig1.update_traces(textposition='inside', textinfo='percent+label') |
|
st.subheader("Pie Chart", divider="red") |
|
st.plotly_chart(fig1) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig1, figure_name="label_pie_chart") |
|
with col2: |
|
fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels') |
|
st.subheader("Bar Chart", divider="red") |
|
st.plotly_chart(fig2) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig2, figure_name="label_bar_chart") |
|
|
|
dfa = pd.DataFrame( |
|
data={ |
|
'word': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'entity_group': ['label (tag) assigned to a given extracted entity'], |
|
'start': ['index of the start of the corresponding entity'], |
|
'end': ['index of the end of the corresponding entity'], |
|
}) |
|
buf = io.BytesIO() |
|
with zipfile.ZipFile(buf, "w") as myzip: |
|
myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) |
|
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) |
|
|
|
with stylable_container( |
|
key="download_button", |
|
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""", |
|
): |
|
st.download_button( |
|
label="Download zip file", |
|
data=buf.getvalue(), |
|
file_name="zip file.zip", |
|
mime="application/zip", |
|
) |
|
if comet_initialized: |
|
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip") |
|
|
|
st.divider() |
|
if comet_initialized: |
|
experiment.end() |
|
|