File size: 4,438 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
2955054
b1ed479
 
2955054
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446b3f9
 
 
5929cca
7b3f010
5196b87
caf704e
 
ebf4966
3b07ba0
ebf4966
caf704e
 
446b3f9
caf704e
446b3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1fae35
446b3f9
 
 
 
 
 
 
 
 
 
 
99f18bc
 
446b3f9
34d0e07
446b3f9
 
 
34d0e07
3b07ba0
6ae6756
446b3f9
 
e1fae35
 
34d0e07
99f18bc
 
446b3f9
 
3b07ba0
446b3f9
eea17f0
 
 
 
446b3f9
eea17f0
 
 
 
 
 
 
99f18bc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload your resume to retrieve the results. You can upload up to 10 resumes in total.
    
    **Usage Limits**
    You can request results up to 10 times in total.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')


st.subheader("Candidate Profile 1", divider = "green")
             
txt = st.text_area("Job description", key = "text 1")
job = pd.Series(txt, name="Text")


if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 3

if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 1"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 1")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 2")

                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")


else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")

if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")