File size: 3,529 Bytes
5bea701
 
5a5c182
c40c6c3
88d066d
040362f
5bea701
9ac410d
 
 
 
 
88d066d
 
9ac410d
23fd868
 
 
 
 
cef76db
 
 
 
 
 
c71c13d
bf47e43
5929cca
 
5196b87
1a68e65
5929cca
eddfa20
fb9b052
 
 
 
fb5218a
87c1f41
 
5043930
b979134
 
36fcfae
b979134
 
8da9b1a
b979134
 
8da9b1a
dc3fbf7
 
 
 
 
 
80b0d9b
56827f2
b979134
8da9b1a
63fdfc2
b1a0cf1
 
 
 
 
1704d5a
b1a0cf1
 
 
 
 
1704d5a
 
 
56827f2
 
1704d5a
 
b1a0cf1
 
 
63fdfc2
dd3054c
5b1512b
ffb9a11
bf47e43
5929cca
 
5196b87
1a68e65
5929cca
eddfa20
fb9b052
 
 
 
fb5218a
87c1f41
 
5043930
 
87c1f41
1a68e65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER


import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from gliner import GLiNER

import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import tempfile

txt = st.text_area("Job description", key = "text 1")
job = pd.Series(txt, name="Text")
st.dataframe(job)

uploaded_files = st.file_uploader(
    "Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 1"
)
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        st.dataframe(data)
        frames = [job, data]
        result = pd.concat(frames)
        st.dataframe(result)

        model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
        labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
        entities = model.predict_entities(text_data, labels)
        df = pd.DataFrame(entities)
        st.dataframe(entities)

        import plotly.express as px
        fig = px.treemap(df, path=[px.Constant("all"), 'Text', 'Label', 'Score'],
                 values='Label', color='Text')
        fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
        st.plotly_chart(fig)



        
            
        
        vectorizer = TfidfVectorizer()
        tfidf_matrix = vectorizer.fit_transform(result)
        tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
        st.subheader("TF-IDF Values:")
        st.dataframe(tfidf_df)
        
        cosine_sim_matrix = cosine_similarity(tfidf_matrix)
        cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
        st.subheader("Cosine Similarity Matrix:")
        st.dataframe(cosine_sim_df)

        import plotly.express as px
        
        fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
                        x=['text1', 'Jon Description'],
                        y=['text1', 'Job Description'])
        st.plotly_chart(fig)

        st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
        for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
            st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")

    
st.divider()

txt = st.text_area("Job description", key = "text 2")
job = pd.Series(txt, name="Text")
st.dataframe(job)

uploaded_files = st.file_uploader(
    "Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 2"
)
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        st.dataframe(data)
        frames = [job, data]
        result = pd.concat(frames)
        st.dataframe(result)