File size: 28,718 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
2955054
b1ed479
 
2955054
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb38733
2955054
b65c592
5929cca
2955054
5196b87
caf704e
 
ebf4966
2955054
ebf4966
caf704e
 
2955054
caf704e
674df9a
 
 
 
 
 
 
b65c592
 
 
2955054
 
b65c592
eea9f45
b65c592
 
2955054
 
39de0ed
b65c592
39de0ed
bc4e2d4
2955054
b65c592
 
 
 
 
2955054
b65c592
2955054
 
 
bc4e2d4
b65c592
 
 
 
 
7746185
2955054
674df9a
caf704e
 
b65c592
 
98209de
2955054
 
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65c592
ebf4966
5196b87
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0e07
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0e07
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0e07
 
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0e07
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d0e07
eb38733
e1fae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload your resume to retrieve the results. You can upload up to 10 resumes in total.
    
    **Usage Limits**
    You can request results up to 10 times in total.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')


st.subheader("Candidate Profile 1", divider = "green")
             
txt = st.text_area("Job description", key = "text 1")
job = pd.Series(txt, name="Text")


if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 2

if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 1"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 1")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 2")

                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")

else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")

if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")



    
               
st.subheader("Candidate Profile 2", divider = "green")
             
txt = st.text_area("Job description", key = "text 2")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 2"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 3")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 4")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               




st.subheader("Candidate Profile 3", divider = "green")
             
txt = st.text_area("Job description", key = "text 3")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 3"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 5")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 6")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               
st.subheader("Candidate Profile 4", divider = "green")
             
txt = st.text_area("Job description", key = "text 4")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 4"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 7")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 8")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               



st.subheader("Candidate Profile 5", divider = "green")
             
txt = st.text_area("Job description", key = "text 5")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 5"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 9")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 10")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               

st.subheader("Candidate Profile 6", divider = "green")
             
txt = st.text_area("Job description", key = "text 6")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 6"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 11")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 12")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               

st.subheader("Candidate Profile 7", divider = "green")
             
txt = st.text_area("Job description", key = "text 7")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 7"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 13")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 14")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    


st.subheader("Candidate Profile 8", divider = "green")
             
txt = st.text_area("Job description", key = "text 8")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 8"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 16")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 18")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               

st.subheader("Candidate Profile 9", divider = "green")
             
txt = st.text_area("Job description", key = "text 9")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 9"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 17")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 18")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
    
               

st.subheader("Candidate Profile 10", divider = "green")
             
txt = st.text_area("Job description", key = "text 10")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
max_attempts = 2
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", type="pdf", key="candidate 10"
    )
    if uploaded_files:
        st.session_state['upload_count'] += 1
        for uploaded_file in uploaded_files:
            pdf_reader = PdfReader(uploaded_file)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
                data = pd.Series(text_data, name = 'Text')
                frames = [job, data]
                result = pd.concat(frames)
                
                
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                
                
                fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
                fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig1, key = "figure 19")
                
                vectorizer = TfidfVectorizer()
                tfidf_matrix = vectorizer.fit_transform(result)
                tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
                cosine_sim_matrix = cosine_similarity(tfidf_matrix)
                cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
                
        
                fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
                st.plotly_chart(fig2, key = "figure 20")
                st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
                for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                    st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")