|
Compare your experiments with Aim on Spaces |
|
Let's use a quick example of a PyTorch CNN trained on MNIST to demonstrate end-to-end Aim on Spaces deployment. The full example is in the Aim repo examples folder. |
|
|
|
from aim import Run |
|
from aim.pytorch import track_gradients_dists, track_params_dists |
|
|
|
# Initialize a new Run |
|
aim_run = Run() |
|
... |
|
items = {'accuracy': acc, 'loss': loss} |
|
aim_run.track(items, epoch=epoch, context={'subset': 'train'}) |
|
|
|
# Track weights and gradients distributions |
|
track_params_dists(model, aim_run) |
|
track_gradients_dists(model, aim_run) |