Spaces:
Running
Running
File size: 13,485 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 f0f9b27 f776418 f0f9b27 febb4a6 51a3749 68ded6f febb4a6 942bf87 f776418 febb4a6 f0f9b27 febb4a6 adaeb14 febb4a6 adaeb14 dc9275e f776418 febb4a6 77584b9 febb4a6 f776418 77584b9 f776418 febb4a6 0c1f1e9 febb4a6 0c1f1e9 febb4a6 0c1f1e9 febb4a6 0c1f1e9 febb4a6 68ded6f febb4a6 0c1f1e9 febb4a6 0c1f1e9 febb4a6 68ded6f 77584b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from lime.lime_tabular import LimeTabularExplainer
from math import expm1
import matplotlib.pyplot as plt
import io
import base64
import os
# --- Configuration and Model Loading ---
MODEL_DIR = os.path.dirname(os.path.abspath(__file__))
# Load AMP Classifier
try:
model = joblib.load(os.path.join(MODEL_DIR, "RF.joblib"))
scaler = joblib.load(os.path.join(MODEL_DIR, "norm (4).joblib"))
except FileNotFoundError as e:
raise gr.Error(f"Classifier model or scaler not found: {e}. Make sure RF.joblib and norm (4).joblib are in the {MODEL_DIR} directory.")
except Exception as e:
raise gr.Error(f"Error loading classifier components: {e}")
# Load ProtBert
try:
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()
except Exception as e:
raise gr.Error(f"Error loading ProtBert model/tokenizer: {e}. Check internet connection or model availability.")
# Full list of selected features (as provided in the original code)
selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
"_PolarabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
"APAAC15", "APAAC18", "APAAC19", "APAAC24"]
# LIME Explainer Setup
try:
sample_data = np.random.rand(500, len(selected_features)) # Fallback: Generate random sample data
except Exception:
print("Warning: Could not load pre-saved sample data for LIME. Generating random sample data.")
sample_data = np.random.rand(500, len(selected_features))
explainer = LimeTabularExplainer(
training_data=sample_data,
feature_names=selected_features,
class_names=["AMP", "Non-AMP"],
mode="classification"
)
# --- Feature Extraction Function ---
def extract_features(sequence: str) -> np.ndarray:
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if not (10 <= len(cleaned_sequence) <= 100):
raise gr.Error(f"Invalid sequence length ({len(cleaned_sequence)}). Must be between 10 and 100 characters and contain only standard amino acids.")
try:
dipeptide_features = AAComposition.CalculateAADipeptideComposition(cleaned_sequence)
ctd_features = CTD.CalculateCTD(cleaned_sequence)
auto_features = Autocorrelation.CalculateAutoTotal(cleaned_sequence)
pseudo_features = PseudoAAC.GetAPseudoAAC(cleaned_sequence, lamda=9)
all_features_dict = {}
all_features_dict.update(ctd_features)
all_features_dict.update(dipeptide_features)
all_features_dict.update(auto_features)
all_features_dict.update(pseudo_features)
feature_df_all = pd.DataFrame([all_features_dict])
computed_features_ordered = feature_df_all.reindex(columns=selected_features, fill_value=0)
computed_features_ordered = computed_features_ordered.fillna(0)
normalized_array = scaler.transform(computed_features_ordered.values)
return normalized_array
except Exception as e:
raise gr.Error(f"Feature extraction failed: {e}. Ensure sequence is valid and Propy dependencies are met.")
# --- MIC Prediction Function ---
def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if not (10 <= len(cleaned_sequence) <= 100):
raise gr.Error(f"Invalid sequence length for MIC prediction ({len(cleaned_sequence)}). Must be between 10 and 100 characters.")
seq_spaced = ' '.join(list(cleaned_sequence))
try:
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
outputs = protbert_model(**tokens)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
except Exception as e:
raise gr.Error(f"Error generating ProtBert embedding: {e}. Check sequence format or model availability.")
bacteria_config = {
"e_coli": {"display_name": "E.coli", "model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
"p_aeruginosa": {"display_name": "P. aeruginosa", "model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
"s_aureus": {"display_name": "S. aureus", "model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
"k_pneumoniae": {"display_name": "K. pneumoniae", "model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
}
mic_results = {}
for bacterium_key in selected_bacteria_keys:
cfg = bacteria_config.get(bacterium_key)
if not cfg:
mic_results[bacterium_key] = "Error: Invalid bacterium key provided."
continue
try:
mic_scaler = joblib.load(os.path.join(MODEL_DIR, cfg["scaler"]))
scaled_embedding = mic_scaler.transform(embedding)
transformed_embedding = scaled_embedding
if cfg["pca"]:
mic_pca = joblib.load(os.path.join(MODEL_DIR, cfg["pca"]))
transformed_embedding = mic_pca.transform(scaled_embedding)
mic_model = joblib.load(os.path.join(MODEL_DIR, cfg["model"]))
mic_log = mic_model.predict(transformed_embedding)[0]
mic = round(expm1(mic_log), 3)
mic_results[bacterium_key] = mic
except FileNotFoundError as e:
mic_results[bacterium_key] = f"Model file not found for {cfg['display_name']}: {e}"
except Exception as e:
mic_results[bacterium_key] = f"Prediction error for {cfg['display_name']}: {e}"
return mic_results
# --- LIME Plot Generation Helper ---
def generate_lime_plot_base64(explanation_list: list) -> str:
if not explanation_list:
return ""
fig, ax = plt.subplots(figsize=(10, 6))
features = [item[0] for item in explanation_list]
weights = [item[1] for item in explanation_list]
sorted_indices = np.argsort(np.abs(weights))[::-1]
features_sorted = [features[i] for i in sorted_indices]
weights_sorted = [weights[i] for i in sorted_indices]
y_pos = np.arange(len(features_sorted))
colors = ['green' if w > 0 else 'red' for w in weights_sorted]
ax.barh(y_pos, weights_sorted, align='center', color=colors)
ax.set_yticks(y_pos)
ax.set_yticklabels(features_sorted, fontsize=10)
ax.invert_yaxis()
ax.set_xlabel('Contribution to Prediction (LIME Weight)', fontsize=12)
ax.set_title('Top Features Influencing Prediction (LIME)', fontsize=14)
ax.axvline(0, color='grey', linestyle='--', linewidth=0.8)
plt.grid(axis='x', linestyle=':', alpha=0.7)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
plt.close(fig)
return image_base64
# --- Gradio API Endpoints ---
def classify_and_interpret_amp(sequence: str) -> dict:
try:
features = extract_features(sequence)
prediction_class_idx = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
amp_label = "AMP (Positive)" if prediction_class_idx == 0 else "Non-AMP"
confidence = probabilities[prediction_class_idx]
explanation = explainer.explain_instance(
data_row=features[0],
predict_fn=model.predict_proba,
num_features=10
)
top_features = []
for feat_str, weight in explanation.as_list():
parts = feat_str.split(" ", 1)
feature_name = parts[0]
condition = parts[1] if len(parts) > 1 else ""
top_features.append({
"feature": feature_name,
"condition": condition.strip(),
"value": round(weight, 4)
})
lime_plot_base64_str = generate_lime_plot_base64(explanation.as_list())
return {
"label": amp_label,
"confidence": float(confidence),
"shap_plot_base64": lime_plot_base64_str,
"top_features": top_features
}
except gr.Error as e:
raise e
except Exception as e:
raise gr.Error(f"An unexpected error occurred during AMP classification: {e}")
def get_mic_predictions_api(sequence: str, selected_bacteria_keys: list) -> dict:
try:
mic_results = predictmic(sequence, selected_bacteria_keys)
return mic_results
except gr.Error as e:
raise e
except Exception as e:
raise gr.Error(f"An unexpected error occurred during MIC prediction API call: {e}")
# --- Gradio Interface Definition ---
with gr.Blocks() as demo:
gr.Markdown("# EPIC-AMP Platform Backend API")
gr.Markdown("This Gradio application provides the backend services for the EPIC-AMP frontend.")
with gr.Tab("AMP Classification & Interpretability API"):
gr.Markdown("### `/predict` Endpoint (AMP Classification, Confidence, LIME Plot, Top Features)")
gr.Markdown("Input an amino acid sequence (10-100 AAs) to get classification details.")
sequence_input_amp = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter sequence here...")
amp_api_output = gr.Json(label="AMP Prediction Details JSON Output")
gr.Button("Test Classification").click(
fn=classify_and_interpret_amp,
inputs=[sequence_input_amp],
outputs=[amp_api_output],
api_name="predict"
)
with gr.Tab("MIC Prediction API"):
gr.Markdown("### `/predict_mic` Endpoint (MIC Values)")
gr.Markdown("Input an amino acid sequence (only if classified as AMP) and select bacteria to get predicted MIC values.")
sequence_input_mic = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter AMP sequence for MIC prediction...")
mic_bacteria_checkboxes = gr.CheckboxGroup(
choices=["e_coli", "p_aeruginosa", "s_aureus", "k_pneumoniae"],
label="Select Bacteria for MIC Prediction (keys for backend)"
)
mic_api_output = gr.Json(label="MIC Prediction JSON Output")
gr.Button("Test MIC Prediction").click(
fn=get_mic_predictions_api,
inputs=[sequence_input_mic, mic_bacteria_checkboxes],
outputs=[mic_api_output],
api_name="predict_mic"
)
# Corrected launch command: removed 'enable_queue'
demo.launch(share=True, show_api=True) |