File size: 5,220 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
248a61c
e199881
248ff12
942bf87
248a61c
 
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
aa6838a
c63f76d
 
 
aa6838a
 
c63f76d
aa6838a
248a61c
aa6838a
 
c63f76d
aa6838a
 
c63f76d
aa6838a
 
c63f76d
a359627
aa6838a
 
 
a359627
 
aa6838a
 
 
 
 
c63f76d
 
 
 
 
9748994
85c36de
248a61c
9f51e97
81bcfb3
248a61c
81bcfb3
e199881
 
c9a939f
81bcfb3
 
 
 
 
248a61c
85c36de
 
 
 
 
248a61c
85c36de
 
81bcfb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (1).joblib")

# Feature list (KEEP THIS CONSISTENT)
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):
    """Extract selected features and normalize them."""
    if len(sequence) < 3:  # Ensure sequence is long enough
        return None  # Return None if sequence is too short

    all_features_dict = {}

    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    all_features_dict.update(dipeptide_features) # Use update instead of reassignment

    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    all_features_dict.update(auto_features) # Use update

    ctd_features = CTD.CalculateCTD(sequence)
    all_features_dict.update(ctd_features) # Use update

    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
    all_features_dict.update(pseudo_features) # Use update


    feature_values = list(all_features_dict.values()) # Use all_features_dict
    feature_array = np.array(feature_values).reshape(-1, 1)
    normalized_features = scaler.transform(feature_array.T)
    normalized_features = normalized_features.flatten()

    selected_feature_dict = {}
    for i, feature in enumerate(selected_features):
        if feature in all_features_dict: # Use all_features_dict
            selected_feature_dict[feature] = normalized_features[i]

    selected_feature_df = pd.DataFrame([selected_feature_dict])
    selected_feature_array = selected_feature_df.T.to_numpy()

    return selected_feature_array


def predict(sequence):
    """Predicts whether the input sequence is an AMP."""
    features = extract_features(sequence)
    if features is None:
        return "Error: Could not extract features."

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Label(label="Prediction"),
    title="AMP Classifier",
    description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)

iface.launch(share=True)