nonzeroexit commited on
Commit
44f5cf9
·
verified ·
1 Parent(s): 77584b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -256
app.py CHANGED
@@ -8,269 +8,142 @@ import torch
8
  from transformers import BertTokenizer, BertModel
9
  from lime.lime_tabular import LimeTabularExplainer
10
  from math import expm1
11
- import matplotlib.pyplot as plt
12
- import io
13
- import base64
14
- import os
15
 
16
- # --- Configuration and Model Loading ---
17
- MODEL_DIR = os.path.dirname(os.path.abspath(__file__))
18
 
19
- # Load AMP Classifier
20
- try:
21
- model = joblib.load(os.path.join(MODEL_DIR, "RF.joblib"))
22
- scaler = joblib.load(os.path.join(MODEL_DIR, "norm (4).joblib"))
23
- except FileNotFoundError as e:
24
- raise gr.Error(f"Classifier model or scaler not found: {e}. Make sure RF.joblib and norm (4).joblib are in the {MODEL_DIR} directory.")
25
- except Exception as e:
26
- raise gr.Error(f"Error loading classifier components: {e}")
27
 
28
- # Load ProtBert
29
- try:
30
- tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
31
- protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
32
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33
- protbert_model = protbert_model.to(device).eval()
34
- except Exception as e:
35
- raise gr.Error(f"Error loading ProtBert model/tokenizer: {e}. Check internet connection or model availability.")
36
 
 
 
 
 
37
 
38
- # Full list of selected features (as provided in the original code)
39
- selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
40
- "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
41
- "_PolarabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
42
- "_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
43
- "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
44
- "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
45
- "_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
46
- "_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
47
- "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
48
- "LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
49
- "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
50
- "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
51
- "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
52
- "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
53
- "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
54
- "GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
55
- "GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
56
- "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
57
- "GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
58
- "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
59
- "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
60
- "GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
61
- "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
62
- "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
63
- "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
64
- "APAAC15", "APAAC18", "APAAC19", "APAAC24"]
65
-
66
- # LIME Explainer Setup
67
- try:
68
- sample_data = np.random.rand(500, len(selected_features)) # Fallback: Generate random sample data
69
- except Exception:
70
- print("Warning: Could not load pre-saved sample data for LIME. Generating random sample data.")
71
- sample_data = np.random.rand(500, len(selected_features))
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  explainer = LimeTabularExplainer(
74
- training_data=sample_data,
75
- feature_names=selected_features,
76
- class_names=["AMP", "Non-AMP"],
77
- mode="classification"
78
  )
79
 
80
- # --- Feature Extraction Function ---
81
- def extract_features(sequence: str) -> np.ndarray:
82
- cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
83
- if not (10 <= len(cleaned_sequence) <= 100):
84
- raise gr.Error(f"Invalid sequence length ({len(cleaned_sequence)}). Must be between 10 and 100 characters and contain only standard amino acids.")
85
-
86
- try:
87
- dipeptide_features = AAComposition.CalculateAADipeptideComposition(cleaned_sequence)
88
- ctd_features = CTD.CalculateCTD(cleaned_sequence)
89
- auto_features = Autocorrelation.CalculateAutoTotal(cleaned_sequence)
90
- pseudo_features = PseudoAAC.GetAPseudoAAC(cleaned_sequence, lamda=9)
91
-
92
- all_features_dict = {}
93
- all_features_dict.update(ctd_features)
94
- all_features_dict.update(dipeptide_features)
95
- all_features_dict.update(auto_features)
96
- all_features_dict.update(pseudo_features)
97
-
98
- feature_df_all = pd.DataFrame([all_features_dict])
99
-
100
- computed_features_ordered = feature_df_all.reindex(columns=selected_features, fill_value=0)
101
- computed_features_ordered = computed_features_ordered.fillna(0)
102
-
103
- normalized_array = scaler.transform(computed_features_ordered.values)
104
-
105
- return normalized_array
106
- except Exception as e:
107
- raise gr.Error(f"Feature extraction failed: {e}. Ensure sequence is valid and Propy dependencies are met.")
108
-
109
- # --- MIC Prediction Function ---
110
- def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
111
- cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
112
- if not (10 <= len(cleaned_sequence) <= 100):
113
- raise gr.Error(f"Invalid sequence length for MIC prediction ({len(cleaned_sequence)}). Must be between 10 and 100 characters.")
114
-
115
- seq_spaced = ' '.join(list(cleaned_sequence))
116
- try:
117
- tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
118
- tokens = {k: v.to(device) for k, v in tokens.items()}
119
- with torch.no_grad():
120
- outputs = protbert_model(**tokens)
121
- embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
122
- except Exception as e:
123
- raise gr.Error(f"Error generating ProtBert embedding: {e}. Check sequence format or model availability.")
124
-
125
- bacteria_config = {
126
- "e_coli": {"display_name": "E.coli", "model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
127
- "p_aeruginosa": {"display_name": "P. aeruginosa", "model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
128
- "s_aureus": {"display_name": "S. aureus", "model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
129
- "k_pneumoniae": {"display_name": "K. pneumoniae", "model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
130
- }
131
-
132
- mic_results = {}
133
- for bacterium_key in selected_bacteria_keys:
134
- cfg = bacteria_config.get(bacterium_key)
135
- if not cfg:
136
- mic_results[bacterium_key] = "Error: Invalid bacterium key provided."
137
- continue
138
-
139
- try:
140
- mic_scaler = joblib.load(os.path.join(MODEL_DIR, cfg["scaler"]))
141
- scaled_embedding = mic_scaler.transform(embedding)
142
-
143
- transformed_embedding = scaled_embedding
144
- if cfg["pca"]:
145
- mic_pca = joblib.load(os.path.join(MODEL_DIR, cfg["pca"]))
146
- transformed_embedding = mic_pca.transform(scaled_embedding)
147
-
148
- mic_model = joblib.load(os.path.join(MODEL_DIR, cfg["model"]))
149
- mic_log = mic_model.predict(transformed_embedding)[0]
150
- mic = round(expm1(mic_log), 3)
151
- mic_results[bacterium_key] = mic
152
- except FileNotFoundError as e:
153
- mic_results[bacterium_key] = f"Model file not found for {cfg['display_name']}: {e}"
154
- except Exception as e:
155
- mic_results[bacterium_key] = f"Prediction error for {cfg['display_name']}: {e}"
156
- return mic_results
157
-
158
- # --- LIME Plot Generation Helper ---
159
- def generate_lime_plot_base64(explanation_list: list) -> str:
160
- if not explanation_list:
161
- return ""
162
-
163
- fig, ax = plt.subplots(figsize=(10, 6))
164
- features = [item[0] for item in explanation_list]
165
- weights = [item[1] for item in explanation_list]
166
-
167
- sorted_indices = np.argsort(np.abs(weights))[::-1]
168
- features_sorted = [features[i] for i in sorted_indices]
169
- weights_sorted = [weights[i] for i in sorted_indices]
170
-
171
- y_pos = np.arange(len(features_sorted))
172
- colors = ['green' if w > 0 else 'red' for w in weights_sorted]
173
- ax.barh(y_pos, weights_sorted, align='center', color=colors)
174
- ax.set_yticks(y_pos)
175
- ax.set_yticklabels(features_sorted, fontsize=10)
176
- ax.invert_yaxis()
177
- ax.set_xlabel('Contribution to Prediction (LIME Weight)', fontsize=12)
178
- ax.set_title('Top Features Influencing Prediction (LIME)', fontsize=14)
179
- ax.axvline(0, color='grey', linestyle='--', linewidth=0.8)
180
- plt.grid(axis='x', linestyle=':', alpha=0.7)
181
-
182
- buf = io.BytesIO()
183
- plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
184
- buf.seek(0)
185
- image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
186
- plt.close(fig)
187
- return image_base64
188
-
189
- # --- Gradio API Endpoints ---
190
-
191
- def classify_and_interpret_amp(sequence: str) -> dict:
192
- try:
193
- features = extract_features(sequence)
194
-
195
- prediction_class_idx = model.predict(features)[0]
196
- probabilities = model.predict_proba(features)[0]
197
-
198
- amp_label = "AMP (Positive)" if prediction_class_idx == 0 else "Non-AMP"
199
- confidence = probabilities[prediction_class_idx]
200
-
201
- explanation = explainer.explain_instance(
202
- data_row=features[0],
203
- predict_fn=model.predict_proba,
204
- num_features=10
205
- )
206
-
207
- top_features = []
208
- for feat_str, weight in explanation.as_list():
209
- parts = feat_str.split(" ", 1)
210
- feature_name = parts[0]
211
- condition = parts[1] if len(parts) > 1 else ""
212
-
213
- top_features.append({
214
- "feature": feature_name,
215
- "condition": condition.strip(),
216
- "value": round(weight, 4)
217
- })
218
-
219
- lime_plot_base64_str = generate_lime_plot_base64(explanation.as_list())
220
-
221
- return {
222
- "label": amp_label,
223
- "confidence": float(confidence),
224
- "shap_plot_base64": lime_plot_base64_str,
225
- "top_features": top_features
226
- }
227
-
228
- except gr.Error as e:
229
- raise e
230
- except Exception as e:
231
- raise gr.Error(f"An unexpected error occurred during AMP classification: {e}")
232
-
233
- def get_mic_predictions_api(sequence: str, selected_bacteria_keys: list) -> dict:
234
- try:
235
- mic_results = predictmic(sequence, selected_bacteria_keys)
236
- return mic_results
237
- except gr.Error as e:
238
- raise e
239
- except Exception as e:
240
- raise gr.Error(f"An unexpected error occurred during MIC prediction API call: {e}")
241
-
242
- # --- Gradio Interface Definition ---
243
- with gr.Blocks() as demo:
244
- gr.Markdown("# EPIC-AMP Platform Backend API")
245
- gr.Markdown("This Gradio application provides the backend services for the EPIC-AMP frontend.")
246
-
247
- with gr.Tab("AMP Classification & Interpretability API"):
248
- gr.Markdown("### `/predict` Endpoint (AMP Classification, Confidence, LIME Plot, Top Features)")
249
- gr.Markdown("Input an amino acid sequence (10-100 AAs) to get classification details.")
250
- sequence_input_amp = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter sequence here...")
251
- amp_api_output = gr.Json(label="AMP Prediction Details JSON Output")
252
- gr.Button("Test Classification").click(
253
- fn=classify_and_interpret_amp,
254
- inputs=[sequence_input_amp],
255
- outputs=[amp_api_output],
256
- api_name="predict"
257
- )
258
-
259
- with gr.Tab("MIC Prediction API"):
260
- gr.Markdown("### `/predict_mic` Endpoint (MIC Values)")
261
- gr.Markdown("Input an amino acid sequence (only if classified as AMP) and select bacteria to get predicted MIC values.")
262
- sequence_input_mic = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter AMP sequence for MIC prediction...")
263
- mic_bacteria_checkboxes = gr.CheckboxGroup(
264
- choices=["e_coli", "p_aeruginosa", "s_aureus", "k_pneumoniae"],
265
- label="Select Bacteria for MIC Prediction (keys for backend)"
266
- )
267
- mic_api_output = gr.Json(label="MIC Prediction JSON Output")
268
- gr.Button("Test MIC Prediction").click(
269
- fn=get_mic_predictions_api,
270
- inputs=[sequence_input_mic, mic_bacteria_checkboxes],
271
- outputs=[mic_api_output],
272
- api_name="predict_mic"
273
- )
274
 
275
- # Corrected launch command: removed 'enable_queue'
276
- demo.launch(share=True, show_api=True)
 
8
  from transformers import BertTokenizer, BertModel
9
  from lime.lime_tabular import LimeTabularExplainer
10
  from math import expm1
 
 
 
 
11
 
12
+ Load AMP Classifier
 
13
 
14
+ model = joblib.load("RF.joblib")
15
+ scaler = joblib.load("norm (4).joblib")
 
 
 
 
 
 
16
 
17
+ Load ProtBert
 
 
 
 
 
 
 
18
 
19
+ tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
20
+ protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
21
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
+ protbert_model = protbert_model.to(device).eval()
23
 
24
+ Full list of selected features
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
27
+ "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
28
+ "_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
29
+ "_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
30
+ "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
31
+ "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
32
+ "_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
33
+ "_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
34
+ "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
35
+ "LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
36
+ "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
37
+ "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
38
+ "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
39
+ "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
40
+ "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
41
+ "GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
42
+ "GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
43
+ "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
44
+ "GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
45
+ "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
46
+ "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
47
+ "GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
48
+ "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
49
+ "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
50
+ "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
51
+ "APAAC15", "APAAC18", "APAAC19", "APAAC24"]
52
+
53
+ LIME Explainer Setup
54
+
55
+ sample_data = np.random.rand(100, len(selected_features))
56
  explainer = LimeTabularExplainer(
57
+ training_data=sample_data,
58
+ feature_names=selected_features,
59
+ class_names=["AMP", "Non-AMP"],
60
+ mode="classification"
61
  )
62
 
63
+ def extract_features(sequence):
64
+ sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
65
+ if len(sequence) < 10:
66
+ return "Error: Sequence too short."
67
+ dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
68
+ filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
69
+ ctd_features = CTD.CalculateCTD(sequence)
70
+ auto_features = Autocorrelation.CalculateAutoTotal(sequence)
71
+ pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
72
+ all_features_dict = {}
73
+ all_features_dict.update(ctd_features)
74
+ all_features_dict.update(filtered_dipeptide_features)
75
+ all_features_dict.update(auto_features)
76
+ all_features_dict.update(pseudo_features)
77
+ feature_df_all = pd.DataFrame([all_features_dict])
78
+ normalized_array = scaler.transform(feature_df_all.values)
79
+ normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
80
+ if not set(selected_features).issubset(set(normalized_df.columns)):
81
+ return "Error: Some selected features are missing from computed features."
82
+ selected_df = normalized_df[selected_features].fillna(0)
83
+ return selected_df.values
84
+
85
+ def predictmic(sequence):
86
+ sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
87
+ if len(sequence) < 10:
88
+ return {"Error": "Sequence too short or invalid."}
89
+ seq_spaced = ' '.join(list(sequence))
90
+ tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
91
+ tokens = {k: v.to(device) for k, v in tokens.items()}
92
+ with torch.no_grad():
93
+ outputs = protbert_model(**tokens)
94
+ embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
95
+ bacteria_config = {
96
+ "E.coli": {"model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
97
+ "S.aureus": {"model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
98
+ "P.aeruginosa": {"model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
99
+ "K.Pneumonia": {"model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
100
+ }
101
+ mic_results = {}
102
+ for bacterium, cfg in bacteria_config.items():
103
+ try:
104
+ scaler = joblib.load(cfg["scaler"])
105
+ scaled = scaler.transform(embedding)
106
+ transformed = joblib.load(cfg["pca"]).transform(scaled) if cfg["pca"] else scaled
107
+ model = joblib.load(cfg["model"])
108
+ mic_log = model.predict(transformed)[0]
109
+ mic = round(expm1(mic_log), 3)
110
+ mic_results[bacterium] = mic
111
+ except Exception as e:
112
+ mic_results[bacterium] = f"Error: {str(e)}"
113
+ return mic_results
114
+
115
+ def full_prediction(sequence):
116
+ features = extract_features(sequence)
117
+ if isinstance(features, str):
118
+ return features
119
+ prediction = model.predict(features)[0]
120
+ probabilities = model.predict_proba(features)[0]
121
+ amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
122
+ confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
123
+ result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n"
124
+ if prediction == 0:
125
+ mic_values = predictmic(sequence)
126
+ result += "\nPredicted MIC Values (\u00b5M):\n"
127
+ for org, mic in mic_values.items():
128
+ result += f"- {org}: {mic}\n"
129
+ else:
130
+ result += "\nMIC prediction skipped for Non-AMP sequences.\n"
131
+ explanation = explainer.explain_instance(
132
+ data_row=features[0],
133
+ predict_fn=model.predict_proba,
134
+ num_features=10
135
+ )
136
+ result += "\nTop Features Influencing Prediction:\n"
137
+ for feat, weight in explanation.as_list():
138
+ result += f"- {feat}: {round(weight, 4)}\n"
139
+ return result
140
+
141
+ iface = gr.Interface(
142
+ fn=full_prediction,
143
+ inputs=gr.Textbox(label="Enter Protein Sequence"),
144
+ outputs=gr.Textbox(label="Results"),
145
+ title="AMP & MIC Predictor + LIME Explanation",
146
+ description="Paste an amino acid sequence (\u226510 characters). Get AMP classification, MIC predictions, and LIME interpretability insights."
147
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
+ iface.launch(share=True)