Spaces:
Sleeping
Sleeping
File size: 15,901 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 74ee3eb 722688a c293424 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 74ee3eb 722688a 31243f4 722688a 31243f4 7d65c66 b177367 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 722688a 31243f4 722688a 31243f4 3c4371f 31243f4 722688a 36ed51a c1fd3d2 722688a 7d65c66 722688a b177367 7d65c66 3c4371f 722688a 31243f4 722688a 31243f4 722688a 31243f4 722688a 7d65c66 722688a 31243f4 722688a 31243f4 3c4371f 31243f4 722688a b177367 7d65c66 3c4371f 31243f4 722688a 7d65c66 722688a e80aab9 722688a 7d65c66 722688a e80aab9 722688a e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 722688a e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 722688a e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage
from langgraph.graph import START, StateGraph
from langchain_google_genai import ChatGoogleGenerativeAI
from ToolSet import toolset
from utils.final_answer import extract_final_answer
from utils.handle_file import handle_attachment
from fetch_question import get_all_questions, get_one_random_question, submit
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
gemini_api_key = os.getenv("GEMINI_API_KEY")
tivaly_api_key = os.getenv("TAVILY_API_KEY")
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key = gemini_api_key
)
llm_with_tools = llm.bind_tools(toolset)
sys_prompt_file = open("sys_prompt.txt")
sys_prompt = sys_prompt_file.read()
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
def assistant(state: AgentState):
return {
"messages": [llm_with_tools.invoke([sys_prompt]+state["messages"])],
}
builder = StateGraph(AgentState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(available_tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition
)
builder.add_edge("tools","assistant")
gaia_agent = builder.compile()
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results. Handles attachments if present.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# 1. Instantiate Agent (modify this part to create your agent)
try:
agent = my_agent
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
questions_data = get_all_questions()
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# 2.2 Handle attachment if present
attachment_info = None
if "file_name" in item and item["file_name"]:
file_name = item.get("file_name")
attachment_info = handle_attachment(task_id, file_name)
print(f"Attachment handling result: {attachment_info['status']}")
try:
# Prepare messages based on attachment handling
messages = [
SystemMessage(content=SYSTEM_PROMPT),
SystemMessage(content=f"Current task id: {task_id}")
]
# If we have an attachment that Claude can process directly
if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
# Encode content for direct inclusion
encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
content_type = attachment_info["content_type"]
# Create multimodal message
if content_type.startswith('image/'):
multimodal_content = [
{"type": "text", "text": question_text},
{
"type": "image",
"source": {
"type": "base64",
"media_type": content_type,
"data": encoded_content
}
}
]
elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
multimodal_content = [
{"type": "text", "text": question_text},
{
"type": "file",
"source": {
"type": "base64",
"media_type": content_type,
"data": encoded_content
},
"name": attachment_info["file_name"]
}
]
messages.append(HumanMessage(content=multimodal_content))
# If we have an attachment that needs tool processing
elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
# Add info about the file to the question
file_info = (
f"{question_text}\n\n"
f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
f"File type: {attachment_info['content_type']}"
)
messages.append(HumanMessage(content=file_info))
# If no attachment or error with attachment
else:
messages.append(HumanMessage(content=question_text))
# Invoke the agent with the prepared messages
agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
return submit(submission_data, results_log)
def run_and_submit_one( profile: gr.OAuthProfile | None):
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = my_agent
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
questions_data = get_one_random_question()
print("questions_data:", questions_data)
# 2.2 Handle attachment if present
attachment_info = None
if "file_name" in questions_data and questions_data["file_name"]:
task_id = questions_data.get("task_id")
file_name = questions_data.get("file_name")
attachment_info = handle_attachment(task_id, file_name)
print(f"Attachment handling result: {attachment_info['status']}")
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
task_id = questions_data.get("task_id")
question_text = questions_data.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question")
try:
# Prepare messages based on attachment handling
messages = [
SystemMessage(content=SYSTEM_PROMPT),
SystemMessage(content=f"Current task id: {task_id}")
]
# If we have an attachment that Claude can process directly
if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
# Encode content for direct inclusion
encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
content_type = attachment_info["content_type"]
# Create multimodal message
if content_type.startswith('image/'):
multimodal_content = [
{"type": "text", "text": question_text},
{
"type": "image",
"source": {
"type": "base64",
"media_type": content_type,
"data": encoded_content
}
}
]
elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
multimodal_content = [
{"type": "text", "text": question_text},
{
"type": "file",
"source": {
"type": "base64",
"media_type": content_type,
"data": encoded_content
},
"name": attachment_info["file_name"]
}
]
messages.append(HumanMessage(content=multimodal_content))
# If we have an attachment that needs tool processing
elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
# Add info about the file to the question
file_info = (
f"{question_text}\n\n"
f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
f"File type: {attachment_info['content_type']}"
)
messages.append(HumanMessage(content=file_info))
# If no attachment or error with attachment
else:
messages.append(HumanMessage(content=question_text))
# Invoke the agent with the prepared messages
agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
return submit(submission_data, results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
run_one_button = gr.Button("Run one question and submit")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
run_one_button.click(
fn=run_and_submit_one,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |