File size: 15,901 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
74ee3eb
 
 
 
 
722688a
 
 
c293424
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
74ee3eb
722688a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
722688a
 
31243f4
7d65c66
b177367
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
722688a
 
31243f4
722688a
31243f4
3c4371f
31243f4
722688a
 
36ed51a
c1fd3d2
722688a
7d65c66
722688a
 
b177367
7d65c66
 
3c4371f
722688a
31243f4
 
 
722688a
31243f4
 
 
722688a
 
 
 
 
 
 
 
31243f4
722688a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
 
722688a
31243f4
722688a
 
 
31243f4
3c4371f
31243f4
722688a
b177367
7d65c66
3c4371f
31243f4
722688a
7d65c66
722688a
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
722688a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
722688a
 
 
 
 
 
 
 
 
 
 
e80aab9
722688a
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
722688a
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
722688a
 
 
 
e80aab9
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage
from langgraph.graph import START, StateGraph
from langchain_google_genai import ChatGoogleGenerativeAI
from ToolSet import toolset
from utils.final_answer import extract_final_answer
from utils.handle_file import handle_attachment
from fetch_question import get_all_questions, get_one_random_question, submit

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
gemini_api_key = os.getenv("GEMINI_API_KEY")
tivaly_api_key = os.getenv("TAVILY_API_KEY")

llm = ChatGoogleGenerativeAI(
    model="gemini-2.0-flash",
    temperature=0,
    google_api_key = gemini_api_key
)

llm_with_tools = llm.bind_tools(toolset)

sys_prompt_file = open("sys_prompt.txt")
sys_prompt = sys_prompt_file.read()

class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]

def assistant(state: AgentState):
    return {
        "messages": [llm_with_tools.invoke([sys_prompt]+state["messages"])],
    }

builder = StateGraph(AgentState)

builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(available_tools))

builder.add_edge(START, "assistant")
builder.add_conditional_edges(
    "assistant",
    tools_condition
)
builder.add_edge("tools","assistant")

gaia_agent = builder.compile()

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results. Handles attachments if present.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    
    # 1. Instantiate Agent (modify this part to create your agent)
    try:
        agent = my_agent
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)
    
    # 2. Fetch Questions
    questions_data = get_all_questions()
    
    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        
        # 2.2 Handle attachment if present
        attachment_info = None
        if "file_name" in item and item["file_name"]:
            file_name = item.get("file_name")
            attachment_info = handle_attachment(task_id, file_name)
            print(f"Attachment handling result: {attachment_info['status']}")
        
        try:
            # Prepare messages based on attachment handling
            messages = [
                SystemMessage(content=SYSTEM_PROMPT),
                SystemMessage(content=f"Current task id: {task_id}")
            ]
            
            # If we have an attachment that Claude can process directly
            if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
                # Encode content for direct inclusion
                encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
                content_type = attachment_info["content_type"]
                
                # Create multimodal message
                if content_type.startswith('image/'):
                    multimodal_content = [
                        {"type": "text", "text": question_text},
                        {
                            "type": "image", 
                            "source": {
                                "type": "base64", 
                                "media_type": content_type,
                                "data": encoded_content
                            }
                        }
                    ]
                elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
                    multimodal_content = [
                        {"type": "text", "text": question_text},
                        {
                            "type": "file", 
                            "source": {
                                "type": "base64", 
                                "media_type": content_type,
                                "data": encoded_content
                            },
                            "name": attachment_info["file_name"]
                        }
                    ]
                
                messages.append(HumanMessage(content=multimodal_content))
                
            # If we have an attachment that needs tool processing
            elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
                # Add info about the file to the question
                file_info = (
                    f"{question_text}\n\n"
                    f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
                    f"File type: {attachment_info['content_type']}"
                )
                messages.append(HumanMessage(content=file_info))
                
            # If no attachment or error with attachment
            else:
                messages.append(HumanMessage(content=question_text))
            
            # Invoke the agent with the prepared messages
            agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
            submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
    
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
    
    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)
    
    # 5. Submit
    return submit(submission_data, results_log)

def run_and_submit_one( profile: gr.OAuthProfile | None):
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = my_agent
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    questions_data = get_one_random_question()
    print("questions_data:", questions_data)
    
    # 2.2 Handle attachment if present
    attachment_info = None
    if "file_name" in questions_data and questions_data["file_name"]:
        task_id = questions_data.get("task_id")
        file_name = questions_data.get("file_name")
        attachment_info = handle_attachment(task_id, file_name)
        print(f"Attachment handling result: {attachment_info['status']}")

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")

    task_id = questions_data.get("task_id")
    question_text = questions_data.get("question")

    if not task_id or question_text is None:
        print(f"Skipping item with missing task_id or question")
    try:
            # Prepare messages based on attachment handling
            messages = [
                SystemMessage(content=SYSTEM_PROMPT),
                SystemMessage(content=f"Current task id: {task_id}")
            ]
            
            # If we have an attachment that Claude can process directly
            if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
                # Encode content for direct inclusion
                encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
                content_type = attachment_info["content_type"]
                
                # Create multimodal message
                if content_type.startswith('image/'):
                    multimodal_content = [
                        {"type": "text", "text": question_text},
                        {
                            "type": "image", 
                            "source": {
                                "type": "base64", 
                                "media_type": content_type,
                                "data": encoded_content
                            }
                        }
                    ]
                elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
                    multimodal_content = [
                        {"type": "text", "text": question_text},
                        {
                            "type": "file", 
                            "source": {
                                "type": "base64", 
                                "media_type": content_type,
                                "data": encoded_content
                            },
                            "name": attachment_info["file_name"]
                        }
                    ]
                
                messages.append(HumanMessage(content=multimodal_content))
                
            # If we have an attachment that needs tool processing
            elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
                # Add info about the file to the question
                file_info = (
                    f"{question_text}\n\n"
                    f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
                    f"File type: {attachment_info['content_type']}"
                )
                messages.append(HumanMessage(content=file_info))
                
            # If no attachment or error with attachment
            else:
                messages.append(HumanMessage(content=question_text))
            
            # Invoke the agent with the prepared messages
            agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
            submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
    except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    return submit(submission_data, results_log)

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")
    run_one_button = gr.Button("Run one question and submit")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )
    run_one_button.click(
        fn=run_and_submit_one,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)