Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import tempfile | |
import os | |
from moviepy.video.io.VideoFileClip import VideoFileClip | |
def detect_watermark_image(image, watermark_text="WATERMARK", threshold=0.7): | |
"""Detect if an image contains a DCT-domain watermark. | |
Args: | |
image: Input image | |
watermark_text: The text to look for | |
threshold: Detection sensitivity threshold | |
Returns: | |
tuple: (detected (bool), highlighted_image) | |
""" | |
# Ensure image dimensions are divisible by 8 for DCT | |
h, w = image.shape[:2] | |
h_new = (h // 8) * 8 | |
w_new = (w // 8) * 8 | |
image = cv2.resize(image, (w_new, h_new)) | |
# Convert to YCrCb and extract Y channel | |
ycrcb_image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb) | |
y_channel, cr, cb = cv2.split(ycrcb_image) | |
# Apply DCT | |
dct_y = cv2.dct(np.float32(y_channel)) | |
# Create known pattern for detection (systematic approach) | |
h_blocks, w_blocks = dct_y.shape[0] // 8, dct_y.shape[1] // 8 | |
detection_score = 0 | |
max_location = None | |
highlighted_image = image.copy() | |
# Search for watermark pattern in blocks | |
for y_block in range(h_blocks): | |
for x_block in range(w_blocks): | |
# Extract block | |
block = dct_y[y_block*8:(y_block+1)*8, x_block*8:(x_block+1)*8] | |
# Calculate variance to detect unusual patterns | |
block_variance = np.var(block) | |
# Check for anomalies in mid-frequency coefficients | |
mid_freq_mean = np.mean(np.abs(block[2:6, 2:6])) | |
# Simple detection heuristic | |
if mid_freq_mean > 2.0 and block_variance > 100: | |
detection_score += 1 | |
max_location = (x_block*8, y_block*8) | |
detected = detection_score > (h_blocks * w_blocks * 0.01) # Detect if >1% of blocks show watermark characteristics | |
# Highlight detected region if found | |
if detected and max_location: | |
x, y = max_location | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
text_size = cv2.getTextSize(watermark_text, font, 0.5, 1)[0] | |
cv2.putText(highlighted_image, "WATERMARK DETECTED", (x, y + text_size[1]), | |
font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) | |
cv2.rectangle(highlighted_image, (x, y), (x + 64, y + 64), (0, 0, 255), 2) | |
return detected, highlighted_image | |
def detect_watermark_video(video_path, watermark_text="WATERMARK"): | |
"""Detect and highlight watermarks in a video file. | |
Args: | |
video_path (str): Path to the video file | |
watermark_text (str): The watermark text to detect | |
Returns: | |
tuple: (detection_result (bool), output_video_path) | |
""" | |
try: | |
# Process the video | |
video = VideoFileClip(video_path) | |
# Track detection across frames | |
frame_count = 0 | |
detected_frames = 0 | |
def process_frame(frame): | |
nonlocal frame_count, detected_frames | |
frame_count += 1 | |
detected, highlighted_frame = detect_watermark_image(frame, watermark_text) | |
if detected: | |
detected_frames += 1 | |
return highlighted_frame | |
processed_video = video.fl_image(process_frame) | |
# Save the result to a temporary file | |
temp_fd, output_path = tempfile.mkstemp(suffix=".mp4") | |
os.close(temp_fd) # Close the file descriptor properly | |
processed_video.write_videofile(output_path, codec='libx264') | |
# Determine if watermark is detected in the video | |
detection_result = detected_frames > (frame_count * 0.1) # >10% of frames have watermark | |
return detection_result, output_path | |
except Exception as e: | |
print(f"Error detecting watermark in video: {e}") | |
return False, None | |