Spaces:
Sleeping
Sleeping
File size: 31,005 Bytes
d8afa61 a6cae6a d8afa61 a150550 d8afa61 a150550 d8afa61 a150550 d8afa61 a150550 d8afa61 a150550 a6cae6a a150550 a6cae6a a150550 d8afa61 a150550 a6cae6a d8afa61 a150550 a6cae6a a150550 d8afa61 a150550 d8afa61 a150550 d8afa61 a150550 d8afa61 a150550 d8afa61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
import datetime
import os
import cv2
import uuid
import json
import time
import re
import subprocess
import uuid
import asyncio
import joblib
import logging
import numpy as np
import pandas as pd
import tempfile
import warnings
import shutil
from pathlib import Path
from PIL import Image
import ffmpeg
import torch
import torchvision.transforms as T
from ultralytics import YOLO
import mediapipe as mp
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks, Form, Request
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from backend.midas_utils.transforms import Compose, Resize, NormalizeImage, PrepareForNet
#################################################
# Initialize application
#################################################
torch.serialization.add_safe_globals([
torch.nn.modules.conv.Conv2d,
torch.nn.modules.batchnorm.BatchNorm2d,
torch.nn.modules.linear.Linear,
torch.nn.modules.container.Sequential,
torch.nn.modules.activation.SiLU,
torch.nn.modules.container.ModuleList,
torch.nn.modules.upsampling.Upsample,
torch.nn.modules.pooling.MaxPool2d
])
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
app = FastAPI()
# CORS Configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve frontend files
static_dir = Path(__file__).parent.parent / "frontend" / "static"
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# Configuration
DETECTION_MODEL_PATH = Path(__file__).parent / 'models' / "yolo_retrained_model.pt"
POSE_MODEL_PATH = Path(__file__).parent / 'models' / "yolov8n-pose.pt"
MAX_VIDEO_SIZE = 500 * 1024 * 1024
OUTPUT_DIR = Path("analysis_output")
UPLOADED_VIDEOS = {} # Track uploaded video session
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Global state
PROGRESS_STORE = {}
ANALYSIS_ACTIVE = False
@app.middleware("http")
async def error_handling_middleware(request: Request, call_next):
try:
return await call_next(request)
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return JSONResponse(
status_code=500,
content={"message": "Internal server error"}
)
@app.on_event("startup")
async def initialize_models():
"""Initialize models with warmup inference"""
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info(f"Initializing models on {device}")
# Initialize detection model
app.state.detection_model = YOLO(DETECTION_MODEL_PATH).to(device)
dummy = np.zeros((640, 640, 3), dtype=np.uint8)
app.state.detection_model(dummy, verbose=False) # Warmup
# Initialize pose model
app.state.pose_model = YOLO(POSE_MODEL_PATH).to(device)
app.state.pose_model(dummy, verbose=False) # Warmup
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Model initialization failed: {str(e)}")
raise RuntimeError(f"Model initialization failed: {str(e)}")
def update_progress(process_id: str, current: int, total: int, message: str):
"""Update progress store with analysis status"""
PROGRESS_STORE[process_id] = {
"percent": min(100, (current / total) * 100),
"message": message,
"current": current,
"total": total,
"status": "processing"
}
#################################################
# Initialize Models
#################################################
# Child detection and image cropping
def detect_child_and_crop(frame):
try:
results = app.state.detection_model.predict(frame, verbose=False)[0]
class_ids = results.boxes.cls.cpu().numpy()
confidences = results.boxes.conf.cpu().numpy()
bboxes = results.boxes.xyxy.cpu().numpy()
child_bbox = None
for box, cls, conf in zip(bboxes, class_ids, confidences):
if conf > 0.6:
if cls == 1:
child_bbox = box
elif cls == 0:
adult_bbox = box
elif cls == 2:
stranger_bbox = box
if child_bbox is None:
return None
x1, y1, x2, y2 = map(int, child_bbox)
# Validate and clamp coordinates
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(frame.shape[1], x2)
y2 = min(frame.shape[0], y2)
if x1 >= x2 or y1 >= y2:
logger.warning("Invalid child bounding box")
return None
child_roi = frame[y1:y2, x1:x2]
if child_roi.size == 0:
logger.warning("Empty child ROI")
return None
return child_roi
except Exception as e:
logger.error(f"Detection error: {str(e)}")
return None
def load_depth_model():
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model = torch.hub.load(
'intel-isl/MiDaS',
'MiDaS_small',
pretrained=True,
trust_repo=True
).float()
model.eval().to(device)
print("Successfully loaded MiDaS model from torch.hub")
return model
except Exception as e:
raise RuntimeError(f"Failed to load MiDaS model: {e}")
# Load transforms
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
Resize = midas_transforms.Resize
NormalizeImage = midas_transforms.NormalizeImage
PrepareForNet = midas_transforms.PrepareForNet
# Define transform pipeline
transform_pipeline = T.Compose([
lambda img: {"image": np.array(img.convert("RGB"), dtype=np.float32) / 255.0},
Resize(
256, 256, resize_target=None, keep_aspect_ratio=True,
ensure_multiple_of=32, resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]),
])
# Load model once
depth_model = load_depth_model()
def calculate_distance_between_objects(frame, obj1_label, obj2_label):
results = app.state.detection_model.predict(frame, verbose=False)[0]
labels = results.names if hasattr(results, 'names') else {}
obj1_center = None
obj2_center = None
for box in results.boxes:
cls = int(box.cls[0].item())
label = labels.get(cls, str(cls))
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
center = ((x1 + x2) // 2, (y1 + y2) // 2)
if label.lower() == obj1_label.lower():
obj1_center = center
elif label.lower() == obj2_label.lower():
obj2_center = center
# Validation checks with proper error handling
if obj1_center is None:
print(f"Important warning: {obj1_label} not detected.")
return None
if obj2_center is None:
if obj2_label.lower() != "stranger":
print(f"Warning: {obj2_label} not detected.")
return None
# Add coordinate validation
def validate_coord(coord):
return isinstance(coord, tuple) and len(coord) == 2 and \
all(isinstance(v, (int, float)) for v in coord)
if not validate_coord(obj1_center) or not validate_coord(obj2_center):
print("Invalid coordinates detected")
return None
try:
# Estimate depth
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_pil = Image.fromarray(img_rgb) # Convert to PIL Image first
input_tensor = transform_pipeline(img_pil).to(device)
if input_tensor.dim() == 3:
input_tensor = input_tensor.unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output = depth_model(input_tensor)
depth_map = output.squeeze().cpu().numpy()
# Rescale object centers with safety checks
original_h, original_w = frame.shape[:2]
depth_h, depth_w = depth_map.shape
def safe_scale(coord, orig_dim, target_dim):
try:
return int((coord / orig_dim) * target_dim)
except ZeroDivisionError:
return 0
# Corrected scaling calls
x1 = safe_scale(obj1_center[0], original_w, depth_w)
y1 = safe_scale(obj1_center[1], original_h, depth_h)
x2 = safe_scale(obj2_center[0], original_w, depth_w)
y2 = safe_scale(obj2_center[1], original_h, depth_h)
# Depth calculation with bounds checking
def get_depth(x, y):
x = max(0, min(depth_w-1, x))
y = max(0, min(depth_h-1, y))
return depth_map[y, x]
d1 = get_depth(x1, y1)
d2 = get_depth(x2, y2)
if d1 <= 0 or d2 <= 0:
return None
# 3D coordinate conversion
fx = fy = 1109 # Focal length assumption
cx, cy = depth_w // 2, depth_h // 2
point1 = (
(x1 - cx) * d1 / fx,
(y1 - cy) * d1 / fy,
d1
)
point2 = (
(x2 - cx) * d2 / fx,
(y2 - cy) * d2 / fy,
d2
)
return float(np.linalg.norm(np.array(point1) - np.array(point2)))
except Exception as e:
logger.error(f"Distance calculation error: {str(e)}")
return None
# MediaPipe initialization
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
min_detection_confidence=0.5
)
LANDMARKS = {
"left_eye": [33, 133, 159, 145, 160, 144],
"right_eye": [362, 263, 386, 374, 387, 373],
"left_eyebrow": [70, 63, 105],
"right_eyebrow": [300, 293, 334],
"mouth": [13, 14, 78, 308],
"jaw": [152]
}
def facial_keypoints(image, prev_landmarks=None):
if image is None:
logger.error("Received None frame")
return 0, None
try:
h, w = image.shape[:2]
except AttributeError:
logger.error("Invalid image type")
return 0, None
if h == 0 or w == 0 or image.size == 0:
logger.error("Received empty frame")
return 0, None
try:
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return 0, None
current_landmarks = {}
for key, indices in LANDMARKS.items():
current_landmarks[key] = [
(int(lm.x * image.shape[1]), int(lm.y * image.shape[0]))
for lm in [results.multi_face_landmarks[0].landmark[i] for i in indices]
]
movement_score = 0
if prev_landmarks:
total_diff = sum(
np.sqrt((cx - px)**2 + (cy - py)**2)
for key in LANDMARKS
for (px, py), (cx, cy) in zip(prev_landmarks.get(key, []), current_landmarks.get(key, []))
)
valid_points = sum(len(landmarks) for landmarks in current_landmarks.values())
movement_score = 2 if (total_diff/valid_points) > 6 else 1 if (total_diff/valid_points) > 3 else 0
return movement_score, current_landmarks
except Exception as e:
logger.error(f"Facial processing error: {str(e)}")
return 0, None
def process_pose(image):
if image is None:
return None
try:
results = app.state.pose_model(image, verbose=False)
if results and hasattr(results[0], 'keypoints'):
return results[0].keypoints.xy[0].cpu().numpy()
return None
except Exception as e:
logger.error(f"Pose processing error: {str(e)}")
return None
def calculate_body_movement(current_pose, previous_pose):
if current_pose is None or previous_pose is None:
return 0.0
valid_points = 0
total_movement = 0.0
for prev, curr in zip(previous_pose, current_pose):
if not (np.isnan(prev).any() or np.isnan(curr).any()):
valid_points += 1
total_movement += abs(np.linalg.norm(curr - prev))
return total_movement
#################################################
# Preparing for Video Processing
#################################################
def time_to_seconds(timestamp):
return sum(x * int(t) for x, t in zip([3600, 60, 1], timestamp.split(':')))
def format_progress_message(stage, current, total, extras=None):
base = f"{stage} - Frame {current}/{total}"
if extras:
return f"{base} - {', '.join(f'{k}: {v}' for k,v in extras.items())}"
return base
def crop_video(process_id: str, video_path: str, timestamp1: str, timestamp2: str,
timestamp3: str, temp_dir: str, ffmpeg_path: str = 'ffmpeg') -> tuple[str, str]:
"""
Crop the video into two clips with cancellation support
"""
temp_dir_path = Path(temp_dir)
# Create temp directory if it doesn't exist
temp_dir_path.mkdir(parents=True, exist_ok=True)
# Generate temporary filenames
first_clip_path = temp_dir_path / f"clip1_{uuid.uuid4()}.mp4"
second_clip_path = temp_dir_path / f"clip2_{uuid.uuid4()}.mp4"
def check_cancellation():
"""Check if processing was cancelled (replace with your actual progress store)"""
# You'll need to import or access your PROGRESS_STORE here
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
raise asyncio.CancelledError("Processing cancelled by user during video cropping")
def run_ffmpeg_with_cancel_check(command: list, output_file: Path) -> None:
"""Run ffmpeg command with cancellation checks"""
try:
# Start the process
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True
)
# Poll process while checking for cancellation
while True:
check_cancellation()
if process.poll() is not None: # Process finished
break
time.sleep(0.5) # Check every 500ms
# Check final status
if process.returncode != 0:
raise subprocess.CalledProcessError(
process.returncode,
command,
output=process.stdout,
stderr=process.stderr
)
except asyncio.CancelledError:
# Cleanup and terminate process
if process.poll() is None: # Still running
process.terminate()
try:
process.wait(timeout=5)
except subprocess.TimeoutExpired:
process.kill()
# Remove partial output file
if output_file.exists():
output_file.unlink()
raise
# Convert timestamps
ts1 = time_to_seconds(timestamp1)
ts2 = time_to_seconds(timestamp2)
ts3 = time_to_seconds(timestamp3)
# Build commands
commands = [
(
[
ffmpeg_path, '-y', '-i', video_path,
'-ss', str(ts1), '-t', str(ts2 - ts1),
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
'-c:a', 'aac', str(first_clip_path)
],
first_clip_path
),
(
[
ffmpeg_path, '-y', '-i', video_path,
'-ss', str(ts2), '-t', str(ts3 - ts2),
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
'-c:a', 'aac', str(second_clip_path)
],
second_clip_path
)
]
try:
# Process both clips
for cmd, output_path in commands:
logger.info("Running command: %s", ' '.join(cmd))
run_ffmpeg_with_cancel_check(cmd, output_path)
return str(first_clip_path), str(second_clip_path)
except asyncio.CancelledError:
# Cleanup both files if either was cancelled
for path in [first_clip_path, second_clip_path]:
if path.exists():
path.unlink()
raise
#################################################
# Video Processing Loop
#################################################
def process_freeplay(process_id: str, freeplay_video: str) -> float:
"""
Sample one frame per second from the freeplay clip,
compute body‐movement metrics and return the average.
"""
PROGRESS_STORE[process_id].update({"message": "Processing freeplay"})
cap = cv2.VideoCapture(freeplay_video)
if not cap.isOpened():
raise RuntimeError(f"Failed to open freeplay video at {freeplay_video}")
# Determine clip duration in seconds
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
duration = total_frames / fps
movements = []
prev_pose = None
for sec in range(int(duration)):
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
raise asyncio.CancelledError("Processing cancelled")
print(f"Processing freeplay frame {sec}")
if PROGRESS_STORE[process_id]["status"] == "cancelled":
break
# Seek by time (ms)
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
ret, frame = cap.read()
if not ret or frame is None or frame.size == 0:
logger.warning(f"Freeplay: no frame at {sec}s")
continue
PROGRESS_STORE[process_id].update({
"current": sec,
"percent": 10 + int((sec + 1) / duration * 30)
})
try:
child_roi = detect_child_and_crop(frame)
pose_kps = process_pose(child_roi)
mv = calculate_body_movement(pose_kps, prev_pose)
movements.append(mv)
prev_pose = pose_kps
except Exception as e:
logger.error(f"Freeplay error at {sec}s: {e}", exc_info=True)
cap.release()
return float(np.mean(movements)) if movements else 0.0
def process_experiment(process_id: str, experiment_video: str, freeplay_movement: float) -> pd.DataFrame:
"""
Sample one frame per second from the experiment clip,
compute all metrics, and return a DataFrame.
"""
PROGRESS_STORE[process_id].update({"message": "Analyzing experiment"})
cap = cv2.VideoCapture(experiment_video)
if not cap.isOpened():
raise RuntimeError(f"Failed to open experiment video at {experiment_video}")
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
duration = total_frames / fps
PROGRESS_STORE[process_id].update({"total": int(duration)})
results = []
prev_landmarks = None
prev_pose = None
for sec in range(int(duration)):
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
raise asyncio.CancelledError("Processing cancelled")
print(f"Processing experiment frame {sec}")
if PROGRESS_STORE[process_id]["status"] == "cancelled":
break
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
ret, frame = cap.read()
if not ret or frame is None or frame.size == 0:
logger.warning(f"Experiment: no frame at {sec}s")
results.append({
"second": sec,
"parent_dist": None,
"stranger_dist": None,
"face_movement": None,
"body_movement": None
})
continue
PROGRESS_STORE[process_id].update({
"current": sec,
"percent": 40 + int((sec + 1) / duration * 60)
})
try:
child_roi = detect_child_and_crop(frame)
face_score, curr_landmarks = facial_keypoints(child_roi, prev_landmarks)
pose_kps = process_pose(child_roi)
body_mv = calculate_body_movement(pose_kps, prev_pose)
mov_ratio = body_mv / freeplay_movement if freeplay_movement else 0.0
parent_dist = calculate_distance_between_objects(frame, "Child", "Adult")
stranger_dist = calculate_distance_between_objects(frame, "Child", "Stranger")
results.append({
"second": sec,
"distance_adult": parent_dist,
"distance_stranger": stranger_dist,
"facial_movement": face_score,
"body_movement": mov_ratio
})
prev_landmarks = curr_landmarks
prev_pose = pose_kps
except Exception as e:
logger.error(f"Experiment error at {sec}s: {e}", exc_info=True)
# still append a row so CSV timestamps remain aligned
results.append({
"second": sec,
"distance_adult": None,
"distance_stranger": None,
"facial_movement": None,
"body_movement": None
})
cap.release()
return pd.DataFrame(results)
def apply_classes(df, timestamp_start, timestamp_end,
distance_model_name='distance_classifier.pkl',
fear_model_name='fear_classifier.pkl',
freeze_model_name='freeze_classifier.pkl'):
distance_tree_path = Path(__file__).parent / 'models' / distance_model_name
fear_tree_path = Path(__file__).parent / 'models' / fear_model_name
freeze_tree_path = Path(__file__).parent / 'models' / freeze_model_name
# Load models
distance_clf = joblib.load(distance_tree_path)
fear_clf = joblib.load(fear_tree_path)
freeze_clf = joblib.load(freeze_tree_path)
# 1) Initialize outputs
df['proximity to parent'] = None
df['proximity to stranger'] = None
df['fear'] = None
df['freeze'] = pd.Series([pd.NA] * len(df), dtype="Int64")
# 2) Distance → proximity classes
valid_mask = df[['distance_adult','body_movement','facial_movement']].notnull().all(axis=1)
preds_parent = distance_clf.predict(df.loc[valid_mask, ['distance_adult']])
df.loc[valid_mask, 'proximity to parent'] = preds_parent
df.loc[valid_mask, 'proximity to stranger'] = pd.Series(preds_parent).map({0:2, 1:1, 2:0}).values
# 3) Fear classifier
fear_cols = ['proximity to parent','proximity to stranger','body_movement','facial_movement']
fear_mask = df[fear_cols].notnull().all(axis=1)
df.loc[fear_mask, 'fear'] = fear_clf.predict(df.loc[fear_mask, fear_cols])
# 4) Build pairwise DataFrame (includes 'second')
df1 = df.iloc[:-1].reset_index(drop=True).add_suffix('_1')
df2 = df.iloc[1:].reset_index(drop=True).add_suffix('_2')
df_pairs = pd.concat([df1, df2], axis=1)
# 5) Filter pairs where both fears > 0
mask = (df_pairs['fear_1'] > 0) & (df_pairs['fear_2'] > 0)
df_filtered = df_pairs[mask].copy()
df_filtered['body_movement_avg'] = (df_filtered['body_movement_1'] + df_filtered['body_movement_2']) / 2
# 6) Predict freeze and backfill to both seconds
if not df_filtered.empty:
df_filtered['freeze'] = freeze_clf.predict(df_filtered[['body_movement_avg']])
for _, row in df_filtered.iterrows():
for sec_col in ('second_1', 'second_2'):
sec = int(row[sec_col])
idx = df.index[df['second'] == sec][0]
current = df.at[idx, 'freeze']
if not (pd.notna(current) and current == 1):
df.at[idx, 'freeze'] = row['freeze']
# 7) Add timestamps column based on timestamp_start and 'second'
time_format = '%H:%M:%S'
ts_start = datetime.datetime.strptime(timestamp_start, time_format)
df['timestamp'] = df['second'].apply(
lambda x: (ts_start + datetime.timedelta(seconds=int(x))).time().strftime(time_format)
)
# 8) Return only the final columns
return df[['timestamp', 'second', 'proximity to parent', 'proximity to stranger', 'fear', 'freeze']]
async def process_video_async(process_id: str, video_path: Path, session_dir: Path,
timestamp1: str, timestamp2: str, timestamp3: str, temp_dir: Path):
if PROGRESS_STORE.get(process_id, {}).get("started"):
return
# Initialize progress tracking
PROGRESS_STORE[process_id] = {
"started": True,
"status": "processing",
"percent": 0,
"message": "Initializing",
"result": None,
"error": None
}
# Validate timestamps
def validate_timestamp(t):
parts = t.split(':')
return (len(parts) == 3 and all(p.isdigit() for p in parts))
if not all(validate_timestamp(ts) for ts in [timestamp1, timestamp2, timestamp3]):
raise ValueError("Invalid timestamp format")
# Crop video
PROGRESS_STORE[process_id].update({
"message": "Cropping video segments",
"percent": 5
})
try:
freeplay_video, experiment_video = await asyncio.to_thread(
crop_video,
process_id,
str(video_path),
timestamp1,
timestamp2,
timestamp3,
str(temp_dir)
)
# Process freeplay segment
PROGRESS_STORE[process_id].update({
"message": "Analyzing freeplay movement",
"percent": 10
})
freeplay_movement = await asyncio.to_thread(
process_freeplay,
process_id,
freeplay_video
)
# Process experiment segment in a thread
PROGRESS_STORE[process_id].update({
"message": "Analyzing experiment",
"percent": 40
})
result_df = await asyncio.to_thread(
process_experiment,
process_id,
experiment_video,
freeplay_movement
)
final_df = apply_classes(result_df, timestamp2, timestamp3)
result_path = session_dir / "analysis.csv"
final_df.to_csv(result_path, index=False)
os.sync()
PROGRESS_STORE[process_id].update({
"status": "completed",
"result": str(result_path),
"percent": 100,
"message": "Analysis complete"
})
except Exception as e:
logger.error(f"Processing error: {str(e)}", exc_info=True)
PROGRESS_STORE[process_id].update({
"status": "error",
"error": str(e),
"percent": 100
})
finally:
if video_path.exists():
video_path.unlink()
#################################################
# API Endpoints
#################################################
@app.post("/api/process-video")
async def start_processing(
video: UploadFile = File(...),
timestamp1: str = Form(...),
timestamp2: str = Form(...),
timestamp3: str = Form(...)
):
# 1) Generate IDs & dirs
process_id = str(uuid.uuid4())
temp_dir = Path(tempfile.mkdtemp())
session_dir = OUTPUT_DIR / f"session_{process_id}"
session_dir.mkdir(exist_ok=True)
# 2) Seed progress (so /api/progress can pick it up immediately)
PROGRESS_STORE[process_id] = {
"started": False,
"status": "queued",
"percent": 0,
"message": "Queued for processing",
"result": None,
"error": None
}
# 3) Save the upload
video_path = temp_dir / video.filename
with open(video_path, "wb") as f:
f.write(await video.read())
# 4) Kick off the async worker on the loop directly
asyncio.create_task(
process_video_async(
process_id, video_path, session_dir,
timestamp1, timestamp2, timestamp3, temp_dir
)
)
# 5) Return the process_id immediately
return {"process_id": process_id}
@app.get("/api/progress/{process_id}")
async def progress_stream(process_id: str):
async def event_generator():
last = {}
while True:
if process_id in PROGRESS_STORE:
current = PROGRESS_STORE[process_id]
if current != last:
last = current.copy() # snapshot instead of alias
yield f"data: {json.dumps(current)}\n\n"
if current["status"] in ["completed", "error", "cancelled"]:
break
await asyncio.sleep(0.5)
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive" # ensure the stream stays open
}
)
@app.get("/api/results/{process_id}")
async def results(process_id: str):
if process_id not in PROGRESS_STORE:
raise HTTPException(404, detail="Process ID not found")
status = PROGRESS_STORE[process_id]
if status["status"] == "completed":
csv_path = Path(status["result"])
try:
# Validate file exists and is readable
if not csv_path.exists() or csv_path.stat().st_size == 0:
raise FileNotFoundError("Result file missing or empty")
return FileResponse(
csv_path,
media_type="text/csv",
filename="stranger_danger_analysis.csv",
headers={"X-Analysis-Complete": "true"}
)
except Exception as e:
logger.error(f"Results delivery failed: {str(e)}")
raise HTTPException(500, detail="Results generation failed")
raise HTTPException(425, detail="Analysis not complete yet")
@app.post("/api/cancel-analysis")
async def cancel_analysis(process_id: str = Form(...)):
if process_id in PROGRESS_STORE:
PROGRESS_STORE[process_id].update({"status": "cancelled", "message": "Cancelled by user"})
return {"status": "cancelled"}
@app.post("/api/delete-video")
async def delete_video(process_id: str = Form(...)):
if process_id in PROGRESS_STORE:
PROGRESS_STORE.pop(process_id, None)
return {"status": "deleted"}
raise HTTPException(404, detail="Video not found")
@app.get("/{full_path:path}")
async def serve_frontend(full_path: str):
if full_path.startswith(("api/", "static/")):
raise HTTPException(status_code=404)
frontend = Path("frontend/index.html")
if not frontend.exists():
raise HTTPException(status_code=404, detail="Frontend not found")
return FileResponse(frontend)
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|