ai-server / whisper_live /transcriber /transcriber_tensorrt.py
nuernie
initial commit
7222c68
import json
import re
import math
from collections import OrderedDict
from pathlib import Path
from typing import Union
import torch
import numpy as np
import torch.nn.functional as F
from whisper.tokenizer import get_tokenizer
from whisper_live.transcriber.tensorrt_utils import (
mel_filters,
load_audio_wav_format,
pad_or_trim,
load_audio
)
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from tensorrt_llm.bindings import GptJsonConfig, KVCacheType
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
def read_config(component, engine_dir):
config_path = engine_dir / component / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
model_config = OrderedDict()
model_config.update(config['pretrained_config'])
model_config.update(config['build_config'])
return model_config
def remove_tensor_padding(input_tensor,
input_tensor_lengths=None,
pad_value=None):
if pad_value:
assert input_tensor_lengths is None, "input_tensor_lengths should be None when pad_value is provided"
# Text tensor case: batch, seq_len
assert torch.all(
input_tensor[:, 0] != pad_value
), "First token in each sequence should not be pad_value"
assert input_tensor_lengths is None
# Create a mask for all non-pad tokens
mask = input_tensor != pad_value
# Apply the mask to input_tensor to remove pad tokens
output_tensor = input_tensor[mask].view(1, -1)
else:
# Audio tensor case: batch, seq_len, feature_len
# position_ids case: batch, seq_len
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
# Initialize a list to collect valid sequences
valid_sequences = []
for i in range(input_tensor.shape[0]):
valid_length = input_tensor_lengths[i]
valid_sequences.append(input_tensor[i, :valid_length])
# Concatenate all valid sequences along the batch dimension
output_tensor = torch.cat(valid_sequences, dim=0)
return output_tensor
class WhisperEncoding:
def __init__(self, engine_dir):
self.session = self.get_session(engine_dir)
config = read_config('encoder', engine_dir)
self.n_mels = config['n_mels']
self.dtype = config['dtype']
self.num_languages = config['num_languages']
self.encoder_config = config
def get_session(self, engine_dir):
serialize_path = engine_dir / 'encoder' / 'rank0.engine'
with open(serialize_path, 'rb') as f:
session = Session.from_serialized_engine(f.read())
return session
def get_audio_features(self,
mel,
mel_input_lengths,
encoder_downsampling_factor=2):
if isinstance(mel, list):
longest_mel = max([f.shape[-1] for f in mel])
mel = [
torch.nn.functional.pad(f, (0, longest_mel - f.shape[-1]),
mode='constant') for f in mel
]
mel = torch.cat(mel, dim=0).type(
str_dtype_to_torch("float16")).contiguous()
bsz, seq_len = mel.shape[0], mel.shape[2]
position_ids = torch.arange(
math.ceil(seq_len / encoder_downsampling_factor),
dtype=torch.int32,
device=mel.device).expand(bsz, -1).contiguous()
if self.encoder_config['plugin_config']['remove_input_padding']:
# mel B,D,T -> B,T,D -> BxT, D
mel = mel.transpose(1, 2)
mel = remove_tensor_padding(mel, mel_input_lengths)
position_ids = remove_tensor_padding(
position_ids, mel_input_lengths // encoder_downsampling_factor)
inputs = OrderedDict()
inputs['input_features'] = mel
inputs['input_lengths'] = mel_input_lengths
inputs['position_ids'] = position_ids
output_list = [
TensorInfo('input_features', str_dtype_to_trt(self.dtype),
mel.shape),
TensorInfo('input_lengths', str_dtype_to_trt('int32'),
mel_input_lengths.shape),
TensorInfo('position_ids', str_dtype_to_trt('int32'),
inputs['position_ids'].shape)
]
output_info = (self.session).infer_shapes(output_list)
logger.debug(f'output info {output_info}')
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream()
ok = self.session.run(inputs=inputs,
outputs=outputs,
stream=stream.cuda_stream)
assert ok, 'Engine execution failed'
stream.synchronize()
encoder_output = outputs['encoder_output']
encoder_output_lengths = mel_input_lengths // encoder_downsampling_factor
return encoder_output, encoder_output_lengths
class WhisperDecoding:
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
self.decoder_config = read_config('decoder', engine_dir)
self.decoder_generation_session = self.get_session(
engine_dir, runtime_mapping, debug_mode)
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
serialize_path = engine_dir / 'decoder' / 'rank0.engine'
with open(serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
decoder_model_config = ModelConfig(
max_batch_size=self.decoder_config['max_batch_size'],
max_beam_width=self.decoder_config['max_beam_width'],
num_heads=self.decoder_config['num_attention_heads'],
num_kv_heads=self.decoder_config['num_attention_heads'],
hidden_size=self.decoder_config['hidden_size'],
vocab_size=self.decoder_config['vocab_size'],
cross_attention=True,
num_layers=self.decoder_config['num_hidden_layers'],
gpt_attention_plugin=self.decoder_config['plugin_config']
['gpt_attention_plugin'],
remove_input_padding=self.decoder_config['plugin_config']
['remove_input_padding'],
kv_cache_type=KVCacheType.PAGED
if self.decoder_config['plugin_config']['paged_kv_cache'] == True
else KVCacheType.CONTINUOUS,
has_position_embedding=self.
decoder_config['has_position_embedding'],
dtype=self.decoder_config['dtype'],
has_token_type_embedding=False,
)
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
decoder_model_config,
decoder_engine_buffer,
runtime_mapping,
debug_mode=debug_mode)
return decoder_generation_session
def generate(self,
decoder_input_ids,
encoder_outputs,
encoder_max_input_length,
encoder_input_lengths,
eot_id,
max_new_tokens=40,
num_beams=1):
batch_size = decoder_input_ids.shape[0]
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_max_input_length = torch.max(decoder_input_lengths).item()
cross_attention_mask = torch.ones([
batch_size, decoder_max_input_length + max_new_tokens,
encoder_max_input_length
]).int().cuda()
# generation config
sampling_config = SamplingConfig(end_id=eot_id,
pad_id=eot_id,
num_beams=num_beams)
self.decoder_generation_session.setup(
decoder_input_lengths.size(0),
decoder_max_input_length,
max_new_tokens,
beam_width=num_beams,
encoder_max_input_length=encoder_max_input_length)
torch.cuda.synchronize()
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
if self.decoder_config['plugin_config']['remove_input_padding']:
# 50256 is the index of <pad> for all whisper models' decoder
WHISPER_PAD_TOKEN_ID = 50256
decoder_input_ids = remove_tensor_padding(
decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID)
if encoder_outputs.dim() == 3:
encoder_output_lens = torch.full((encoder_outputs.shape[0], ),
encoder_outputs.shape[1],
dtype=torch.int32,
device='cuda')
encoder_outputs = remove_tensor_padding(encoder_outputs,
encoder_output_lens)
output_ids = self.decoder_generation_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_outputs,
encoder_input_lengths=encoder_input_lengths,
cross_attention_mask=cross_attention_mask,
)
torch.cuda.synchronize()
# get the list of int from output_ids tensor
output_ids = output_ids.cpu().numpy().tolist()
return output_ids
class WhisperTRTLLM(object):
def __init__(self,
engine_dir,
assets_dir=None,
device=None,
is_multilingual=False,
language="en",
task="transcribe",
use_py_session=False,
num_beams=1,
debug_mode=False,
max_output_len=96):
world_size = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_dir = Path(engine_dir)
encoder_config = read_config('encoder', engine_dir)
decoder_config = read_config('decoder', engine_dir)
self.n_mels = encoder_config['n_mels']
self.num_languages = encoder_config['num_languages']
is_multilingual = (decoder_config['vocab_size'] >= 51865)
self.device = device
self.tokenizer = get_tokenizer(
is_multilingual,
num_languages=self.num_languages,
language=language,
task=task,
)
if use_py_session:
self.encoder = WhisperEncoding(engine_dir)
self.decoder = WhisperDecoding(engine_dir,
runtime_mapping,
debug_mode=False)
else:
json_config = GptJsonConfig.parse_file(engine_dir / 'decoder' /
'config.json')
assert json_config.model_config.supports_inflight_batching
runner_kwargs = dict(engine_dir=engine_dir,
is_enc_dec=True,
max_batch_size=1,
max_input_len=3000,
max_output_len=max_output_len,
max_beam_width=num_beams,
debug_mode=debug_mode,
kv_cache_free_gpu_memory_fraction=0.9,
cross_kv_cache_fraction=0.5)
self.model_runner_cpp = ModelRunnerCpp.from_dir(**runner_kwargs)
self.filters = mel_filters(self.device, self.n_mels, assets_dir)
self.use_py_session = use_py_session
def log_mel_spectrogram(
self,
audio: Union[str, np.ndarray, torch.Tensor],
padding: int = 0,
return_duration=True
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 and 128 are supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80 or 128, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
if audio.endswith('.wav'):
audio, _ = load_audio_wav_format(audio)
else:
audio = load_audio(audio)
assert isinstance(audio, np.ndarray), f"Unsupported audio type: {type(audio)}"
duration = audio.shape[-1] / SAMPLE_RATE
audio = pad_or_trim(audio, N_SAMPLES)
audio = audio.astype(np.float32)
audio = torch.from_numpy(audio)
if self.device is not None:
audio = audio.to(self.device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs()**2
mel_spec = self.filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
if return_duration:
return log_spec, duration
else:
return log_spec
def process_batch(
self,
mel,
mel_input_lengths,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
num_beams=1,
max_new_tokens=96):
prompt_id = self.tokenizer.encode(
text_prefix, allowed_special=set(self.tokenizer.special_tokens.keys()))
prompt_id = torch.tensor(prompt_id)
batch_size = mel.shape[0]
decoder_input_ids = prompt_id.repeat(batch_size, 1)
if self.use_py_session:
encoder_output, encoder_output_lengths = self.encoder.get_audio_features(mel, mel_input_lengths)
encoder_max_input_length = torch.max(encoder_output_lengths).item()
output_ids = self.decoder.generate(decoder_input_ids,
encoder_output,
encoder_max_input_length,
encoder_output_lengths,
self.tokenizer.eot,
max_new_tokens=max_new_tokens,
num_beams=num_beams)
else:
with torch.no_grad():
if isinstance(mel, list):
mel = [
m.transpose(1, 2).type(
str_dtype_to_torch("float16")).squeeze(0)
for m in mel
]
else:
mel = mel.transpose(1, 2)
outputs = self.model_runner_cpp.generate(
batch_input_ids=decoder_input_ids,
encoder_input_features=mel,
encoder_output_lengths=mel_input_lengths // 2,
max_new_tokens=max_new_tokens,
end_id=self.tokenizer.eot,
pad_id=self.tokenizer.eot,
num_beams=num_beams,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
output_ids = outputs['output_ids'].cpu().numpy().tolist()
texts = []
for i in range(len(output_ids)):
text = self.tokenizer.decode(output_ids[i][0]).strip()
texts.append(text)
return texts
def transcribe(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
padding_strategy="max",
max_new_tokens=96,
):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
if padding_strategy == "longest":
pass
else:
mel = torch.nn.functional.pad(mel, (0, 3000 - mel.shape[2]))
features_input_lengths = torch.full((mel.shape[0], ),
mel.shape[2],
dtype=torch.int32,
device=mel.device)
predictions = self.process_batch(
mel,
features_input_lengths,
text_prefix,
num_beams,
max_new_tokens=max_new_tokens
)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
return prediction.strip()
def decode_wav_file(
model,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
mel_filters_dir=None):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
predictions = model.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction = normalizer(prediction)
return prediction.strip()