addit / app.py
YoadTew's picture
Add another example
5b9bac1
#!/usr/bin/env python3
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.
import os
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import tempfile
import gc
from datetime import datetime
from addit_flux_pipeline import AdditFluxPipeline
from addit_flux_transformer import AdditFluxTransformer2DModel
from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler
from addit_methods import add_object_generated, add_object_real
# Global variables for model
pipe = None
device = None
# Initialize model at startup
print("Initializing ADDIT model...")
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load transformer
my_transformer = AdditFluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
# Load pipeline
pipe = AdditFluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=my_transformer,
torch_dtype=torch.bfloat16
).to(device)
# Set scheduler
pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
print("Model initialized successfully!")
except Exception as e:
print(f"Error initializing model: {str(e)}")
print("The application will start but model functionality will be unavailable.")
def validate_inputs(prompt_source, prompt_target, subject_token):
"""Validate user inputs"""
if not prompt_source.strip():
return "Source prompt cannot be empty"
if not prompt_target.strip():
return "Target prompt cannot be empty"
if not subject_token.strip():
return "Subject token cannot be empty"
if subject_token not in prompt_target:
return f"Subject token '{subject_token}' must appear in the target prompt"
return None
@spaces.GPU
def process_generated_image(
prompt_source,
prompt_target,
subject_token,
seed_src,
seed_obj,
extended_scale,
structure_transfer_step,
blend_steps,
localization_model,
progress=gr.Progress(track_tqdm=True)
):
"""Process generated image with ADDIT"""
global pipe
if pipe is None:
return None, None, "Model not initialized. Please restart the application."
# Validate inputs
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
if error_msg:
return None, None, error_msg
# Print current time and input information
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"\n[{current_time}] Starting Generated Image Processing")
print(f"Source Prompt: '{prompt_source}'")
print(f"Target Prompt: '{prompt_target}'")
print(f"Subject Token: '{subject_token}'")
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
try:
# Parse blend steps
if blend_steps.strip():
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
else:
blend_steps_list = []
# Generate images
src_image, edited_image = add_object_generated(
pipe=pipe,
prompt_source=prompt_source,
prompt_object=prompt_target,
subject_token=subject_token,
seed_src=seed_src,
seed_obj=seed_obj,
show_attention=False,
extended_scale=extended_scale,
structure_transfer_step=structure_transfer_step,
blend_steps=blend_steps_list,
localization_model=localization_model,
display_output=False
)
return src_image, edited_image, "Images generated successfully!"
except Exception as e:
error_msg = f"Error generating images: {str(e)}"
print(error_msg)
return None, None, error_msg
@spaces.GPU
def process_real_image(
source_image,
prompt_source,
prompt_target,
subject_token,
seed_src,
seed_obj,
extended_scale,
structure_transfer_step,
blend_steps,
localization_model,
use_offset,
disable_inversion,
progress=gr.Progress(track_tqdm=True)
):
"""Process real image with ADDIT"""
global pipe
if pipe is None:
return None, None, "Model not initialized. Please restart the application."
if source_image is None:
return None, None, "Please upload a source image"
# Validate inputs
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
if error_msg:
return None, None, error_msg
# Print current time and input information
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"\n[{current_time}] Starting Real Image Processing")
print(f"Source Image Size: {source_image.size}")
print(f"Source Prompt: '{prompt_source}'")
print(f"Target Prompt: '{prompt_target}'")
print(f"Subject Token: '{subject_token}'")
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
print(f"Use Offset: {use_offset}, Disable Inversion: {disable_inversion}")
try:
# Resize source image
source_image = source_image.resize((1024, 1024))
# Parse blend steps
if blend_steps.strip():
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
else:
blend_steps_list = []
# Process image
src_image, edited_image = add_object_real(
pipe=pipe,
source_image=source_image,
prompt_source=prompt_source,
prompt_object=prompt_target,
subject_token=subject_token,
seed_src=seed_src,
seed_obj=seed_obj,
extended_scale=extended_scale,
structure_transfer_step=structure_transfer_step,
blend_steps=blend_steps_list,
localization_model=localization_model,
use_offset=use_offset,
show_attention=False,
use_inversion=not disable_inversion,
display_output=False
)
return src_image, edited_image, "Image edited successfully!"
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
print(error_msg)
return None, None, error_msg
def create_interface():
"""Create the Gradio interface"""
# Show model status in the interface
model_status = "Model ready!" if pipe is not None else "Model initialization failed - functionality unavailable"
with gr.Blocks(title="🎨 Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models", theme=gr.themes.Soft()) as demo:
gr.HTML(f"""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎨 Add-it: Training-Free Object Insertion</h1>
<p>Add objects to images using pretrained diffusion models</p>
<p><a href="https://research.nvidia.com/labs/par/addit/" target="_blank">🌐 Project Website</a> |
<a href="https://arxiv.org/abs/2411.07232" target="_blank">📄 Paper</a> |
<a href="https://github.com/NVlabs/addit" target="_blank">💻 Code</a></p>
<p style="color: {'green' if pipe is not None else 'red'}; font-weight: bold;">Status: {model_status}</p>
</div>
""")
# Main interface
with gr.Tabs():
# Generated Images Tab
with gr.TabItem("🎭 Generated Images"):
gr.Markdown("### Generate a base image and add objects to it")
with gr.Row():
with gr.Column(scale=1):
gen_prompt_source = gr.Textbox(
label="Source Prompt",
placeholder="A photo of a cat sitting on the couch",
value="A photo of a cat sitting on the couch"
)
gen_prompt_target = gr.Textbox(
label="Target Prompt",
placeholder="A photo of a cat wearing a blue hat sitting on the couch",
value="A photo of a cat wearing a blue hat sitting on the couch"
)
gen_subject_token = gr.Textbox(
label="Subject Token",
placeholder="hat",
value="hat",
info="Single token representing the object to add **(must appear in target prompt)**"
)
with gr.Accordion("Advanced Settings", open=False):
gen_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
gen_seed_obj = gr.Number(label="Object Seed", value=42, precision=0)
gen_extended_scale = gr.Slider(
label="Extended Scale",
minimum=1.0,
maximum=1.3,
value=1.05,
step=0.01
)
gen_structure_transfer_step = gr.Slider(
label="Structure Transfer Step",
minimum=0,
maximum=10,
value=2,
step=1
)
gen_blend_steps = gr.Textbox(
label="Blend Steps",
value="15",
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
)
gen_localization_model = gr.Dropdown(
label="Localization Model",
choices=[
"attention_points_sam",
"attention",
"attention_box_sam",
"attention_mask_sam",
"grounding_sam"
],
value="attention_points_sam"
)
gen_submit_btn = gr.Button("🎨 Generate & Edit", variant="primary")
with gr.Column(scale=2):
with gr.Row():
gen_src_output = gr.Image(label="Generated Source Image", type="pil")
gen_edited_output = gr.Image(label="Edited Image", type="pil")
gen_status = gr.Textbox(label="Status", interactive=False)
gen_submit_btn.click(
fn=process_generated_image,
inputs=[
gen_prompt_source, gen_prompt_target, gen_subject_token,
gen_seed_src, gen_seed_obj, gen_extended_scale,
gen_structure_transfer_step, gen_blend_steps,
gen_localization_model
],
outputs=[gen_src_output, gen_edited_output, gen_status]
)
# Examples for generated images
gr.Examples(
examples=[
["An empty throne", "A king sitting on a throne", "king"],
["A photo of a man sitting on a bench", "A photo of a man sitting on a bench with a dog", "dog"],
["A photo of a cat sitting on the couch", "A photo of a cat wearing a blue hat sitting on the couch", "hat"],
["A car driving through an empty street", "A pink car driving through an empty street", "car"]
],
inputs=[
gen_prompt_source, gen_prompt_target, gen_subject_token
],
label="Example Prompts"
)
# Real Images Tab
with gr.TabItem("📸 Real Images"):
gr.Markdown("### Upload an image and add objects to it")
gr.HTML("<p style='color: red; font-weight: bold; margin: -15px -10px;'>Note: Images will be resized to 1024x1024 pixels. For best results, use square images.</p>")
with gr.Row():
with gr.Column(scale=1):
real_source_image = gr.Image(label="Source Image", type="pil")
real_prompt_source = gr.Textbox(
label="Source Prompt",
placeholder="A photo of a bed in a dark room",
value="A photo of a bed in a dark room"
)
real_prompt_target = gr.Textbox(
label="Target Prompt",
placeholder="A photo of a dog lying on a bed in a dark room",
value="A photo of a dog lying on a bed in a dark room"
)
real_subject_token = gr.Textbox(
label="Subject Token",
placeholder="dog",
value="dog",
info="Single token representing the object to add **(must appear in target prompt)**"
)
with gr.Accordion("Advanced Settings", open=False):
real_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
real_seed_obj = gr.Number(label="Object Seed", value=0, precision=0)
real_extended_scale = gr.Slider(
label="Extended Scale",
minimum=1.0,
maximum=1.3,
value=1.1,
step=0.01
)
real_structure_transfer_step = gr.Slider(
label="Structure Transfer Step",
minimum=0,
maximum=10,
value=4,
step=1
)
real_blend_steps = gr.Textbox(
label="Blend Steps",
value="18",
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
)
real_localization_model = gr.Dropdown(
label="Localization Model",
choices=[
"attention",
"attention_points_sam",
"attention_box_sam",
"attention_mask_sam",
"grounding_sam"
],
value="attention"
)
real_use_offset = gr.Checkbox(label="Use Offset", value=False)
real_disable_inversion = gr.Checkbox(label="Disable Inversion", value=False)
real_submit_btn = gr.Button("🎨 Edit Image", variant="primary")
with gr.Column(scale=2):
with gr.Row():
real_src_output = gr.Image(label="Source Image", type="pil")
real_edited_output = gr.Image(label="Edited Image", type="pil")
real_status = gr.Textbox(label="Status", interactive=False)
real_submit_btn.click(
fn=process_real_image,
inputs=[
real_source_image, real_prompt_source, real_prompt_target, real_subject_token,
real_seed_src, real_seed_obj, real_extended_scale,
real_structure_transfer_step, real_blend_steps,
real_localization_model, real_use_offset,
real_disable_inversion
],
outputs=[real_src_output, real_edited_output, real_status]
)
# Examples for real images
gr.Examples(
examples=[
[
"images/bed_dark_room.jpg",
"A photo of a bed in a dark room",
"A photo of a dog lying on a bed in a dark room",
"dog"
],
[
"images/flower.jpg",
"A photo of a flower",
"A bee standing on a flower",
"bee"
]
],
inputs=[
real_source_image, real_prompt_source, real_prompt_target, real_subject_token
],
label="Example Images & Prompts"
)
# Tips
with gr.Accordion("💡 Tips for Better Results", open=False):
gr.Markdown("""
- **Prompt Design**: The Target Prompt should be similar to the Source Prompt, but include a description of the new object to insert
- **Seed Variation**: Try different values for Object Seed - some prompts may require a few attempts to get satisfying results
- **Localization Models**: The most effective options are `attention_points_sam` and `attention`. Use Show Attention to visualize localization performance
- **Object Placement Issues**: If the object is not added to the image:
- Try **decreasing** Structure Transfer Step
- Try **increasing** Extended Scale
- **Flexibility**: To allow more flexibility in modifying the source image, leave Blend Steps empty to send an empty list
""")
return demo
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)