File size: 3,345 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import warnings
from dataclasses import dataclass, field


@dataclass
class Dataset:
    dataset_name: str
    dataset_type: str = field(default="torch")
    data_path: str = field(default=None, metadata={"help": "Path to the training data."})
    meta_path: str = field(default=None, metadata={"help": "Path to the meta data for webdataset."})
    image_path: str = field(default=None, metadata={"help": "Path to the training image data."})
    speech_path: str = field(default=None, metadata={"help": "Path to the training speech data."})
    caption_choice: str = field(default=None, metadata={"help": "Path to the caption directory for recaption."})
    description: str = field(
        default=None,
        metadata={
            "help": "Detailed desciption of where the data is from, how it is labelled, intended use case and the size of the dataset."
        },
    )
    test_script: str = (None,)
    maintainer: str = (None,)
    ############## ############## ############## ############## ############## ##############
    caption_choice: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
    caption_choice_2: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
    start_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})
    end_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})


DATASETS_LEGACY = {}


def add_dataset(dataset):
    if dataset.dataset_name in DATASETS_LEGACY:
        # make sure the data_name is unique
        warnings.warn(f"{dataset.dataset_name} already existed in DATASETS. Make sure the name is unique.")
    assert "+" not in dataset.dataset_name, "Dataset name cannot include symbol '+'."
    DATASETS_LEGACY.update({dataset.dataset_name: dataset})


def register_datasets_mixtures():
    ############## ############## ############## ############## ############## ############## 
    # Audio Datasets 
    ############## ############## ############## ############## ############## ##############
    
    data_mixture_1 = Dataset(
        dataset_name="data_mixture_1",
        dataset_type="torch",
        data_path="/path/to/your/data_mixture_1/train.json",
    )
    add_dataset(data_mixture_1)

    data_mixture_2 = Dataset(
        dataset_name="data_mixture_2",
        dataset_type="torch",
        data_path="/path/to/your/data_mixture_2/train.json",
    )
    add_dataset(data_mixture_2)
    # Add more data mixtures below