Spaces:
Running
on
A100
Running
on
A100
File size: 6,818 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# This file is modified from https://github.com/haotian-liu/LLaVA/
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig
from llava.model import LlavaLlamaModel
from llava.model.utils import is_mm_model
def load_pretrained_model(
model_path,
model_name,
model_base=None,
load_8bit=False,
load_4bit=False,
device_map="auto",
device="cuda",
**kwargs,
):
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs["device_map"] = {"": device}
if load_8bit:
kwargs["load_in_8bit"] = True
elif load_4bit:
kwargs["load_in_4bit"] = True
kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
else:
kwargs["torch_dtype"] = torch.float16
# kwargs["torch_dtype"] = torch.bfloat16
if is_mm_model(model_path):
# Load LLaVA model
## TODO @yunhao: mind fixing lora
if "lora" in model_name.lower() and model_base is None:
warnings.warn(
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
)
if ("lora" in model_name.lower() or "dora" in model_name.lower()) and model_base is not None:
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
print(lora_cfg_pretrained)
print("Loading LLaVA from base model...")
config = AutoConfig.from_pretrained(model_base)
prepare_config_for_eval(config, kwargs)
model = LlavaLlamaModel.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
tokenizer = model.tokenizer
token_num, tokem_dim = model.llm.lm_head.out_features, model.llm.lm_head.in_features
if model.llm.lm_head.weight.shape[0] != token_num:
model.llm.lm_head.weight = torch.nn.Parameter(
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
)
model.llm.embed_tokens.weight = torch.nn.Parameter(
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
)
print("Loading additional LLaVA weights...")
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
non_lora_trainables = torch.load(
os.path.join(model_path, "non_lora_trainables.bin"),
map_location="cpu",
)
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
return torch.load(cache_file, map_location="cpu")
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")
non_lora_trainables = {
(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()
}
if any(k.startswith("model.model.") for k in non_lora_trainables):
non_lora_trainables = {
(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print("Loading LoRA weights...")
model = PeftModel.from_pretrained(model, model_path)
print("Merging LoRA weights...")
model = model.merge_and_unload()
print("Model is loaded...")
else:
config = AutoConfig.from_pretrained(model_path)
config.resume_path = model_path
prepare_config_for_eval(config, kwargs)
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
tokenizer = model.tokenizer
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print("Convert to FP16...")
model.to(torch.float16)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, legacy=False)
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
model.eval()
image_processor = None
if is_mm_model(model_path):
model.resize_token_embeddings(len(tokenizer))
if hasattr(model.llm.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
try:
# compatible with deprecated config convention
if getattr(config, "vision_tower_cfg", None) is None:
config.vision_tower_cfg = config.mm_vision_tower
except AttributeError:
raise ValueError(f"Invalid configuration! Cannot find vision_tower in config:\n{config}")
config.model_dtype = kwargs.pop("torch_dtype").__str__()
|