File size: 4,275 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import torch

# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block

"""Quantize Operator"""
"""Input uses 1 * 16 group quantization"""
"""Output uses 1 * 16 group quantization"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""


@triton.autotune(
    configs=[] + get_configs_io_block(),
    key=[
        "N",
    ],
)
@triton.heuristics(
    {
        "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
    }
)
@triton.jit
def _fp8_dequantize_kernel(
    output_ptr,  # output
    input_ptr,
    input_scale_ptr,  # input
    M,
    N,
    SN,
    QB: tl.constexpr,  # shape
    input_stride_0,
    input_stride_1,  # input stride
    s_input_stride_0,
    s_input_stride_1,  # scale of output stride
    output_stride_0,
    output_stride_1,  # output stride
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_SN: tl.constexpr,
):  # CUDA block size

    # Block PID
    pid = tl.program_id(0)
    NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
    pid_dim0 = pid // NUM_BLOCK_N
    pid_dim1 = pid % NUM_BLOCK_N

    # pointers
    input_block_ptr = tl.make_block_ptr(
        base=input_ptr,
        shape=(M, N),
        strides=(input_stride_0, input_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )
    # input ptr
    scale_input_ptr = tl.make_block_ptr(
        base=input_scale_ptr,
        shape=(M, SN),
        strides=(s_input_stride_0, s_input_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )

    input = tl.load(input_block_ptr)
    scale_input = tl.load(scale_input_ptr)

    input = input.to(tl.float32)
    scale_input = scale_input.to(tl.float32)

    # Dequantize and gelu calculation
    scale_input = tl.reshape(scale_input, (BLOCK_M, BLOCK_SN, 1))
    input = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
    output = input * scale_input

    output = tl.reshape(output, (BLOCK_M, BLOCK_N))
    output = output.to(output_ptr.dtype.element_ty)

    # debug
    # gelu_output = input
    # scale_output = scale_input

    # pointers
    output_block_ptr = tl.make_block_ptr(
        base=output_ptr,
        shape=(M, N),
        strides=(output_stride_0, output_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    tl.store(output_block_ptr, output, boundary_check=(0, 1))


def fp8_dequantize(x, s_x, QB):
    # Change batched 3D input to 2D
    batched = False
    if len(x.shape) == 3:
        batched = True
        BS = x.shape[0]
        x = x.reshape(-1, x.shape[-1])
        s_x = s_x.reshape(-1, s_x.shape[-1])

    # defining the input and output tensor
    M, N = x.shape
    SN = N // QB

    y = torch.empty_like(x, dtype=torch.bfloat16)

    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)

    _fp8_dequantize_kernel[grid](
        y,
        x,
        s_x,
        M,
        N,
        SN,
        QB,
        x.stride(0),
        x.stride(1),
        s_x.stride(0),
        s_x.stride(1),
        y.stride(0),
        y.stride(1),
    )

    # Recover 2D to 3D
    if batched:
        y = y.reshape(BS, -1, y.shape[-1])

    return y