File size: 6,328 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import torch

# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block

"""Quantize and Transpose Operator"""
"""Input uses 1 * 16 group quantization"""
"""Output uses 1 * 16 group quantization"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""


@triton.autotune(
    configs=[] + get_configs_io_block(),
    key=[
        "N",
    ],
)
@triton.heuristics(
    {
        "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
    }
)
@triton.jit
def _fp8_division_kernel(
    output_ptr,  # output
    input_ptr,
    input_scale_ptr,  # input
    noise_ptr,  # noise for stochastic
    M,
    N,
    SN,
    QB: tl.constexpr,
    fp8_max,
    e_bit: tl.constexpr,
    m_bit: tl.constexpr,  # shape
    input_stride_0,
    input_stride_1,  # input stride
    output_stride_0,
    output_stride_1,  # output stride
    SCALE_MIN_THRES: tl.constexpr,  # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
    STOCHASTIC: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_SN: tl.constexpr,
):  # CUDA block size

    # Block PID
    pid = tl.program_id(0)
    NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
    pid_dim0 = pid // NUM_BLOCK_N
    pid_dim1 = pid % NUM_BLOCK_N

    # pointers
    input_block_ptr = tl.make_block_ptr(
        base=input_ptr,
        shape=(M, N),
        strides=(input_stride_0, input_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    input = tl.load(input_block_ptr)
    input = input.to(tl.float32)
    scale_output = tl.load(input_scale_ptr)
    scale_output = scale_output.to(tl.float32)

    output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))

    # Quantize Scale calculation
    # Quantize
    output = tl.fdiv(output, scale_output)
    output = tl.reshape(output, (BLOCK_M, BLOCK_N))

    if STOCHASTIC:
        # noise_block_ptr = tl.make_block_ptr(
        #     base=noise_ptr,
        #     shape=(M, N),
        #     strides=(input_stride_0, input_stride_1),
        #     offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        #     block_shape=(BLOCK_M, BLOCK_N),
        #     order=(1, 0)
        # )
        # noise = tl.load(noise_block_ptr)

        offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
        offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
        noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
        noise = tl.rand(0, noise_offset)

        output = _stochastic_rounding(output, noise, e_bit, m_bit)

    output = output.to(output_ptr.type.element_ty)

    # pointers
    output_block_ptr = tl.make_block_ptr(
        base=output_ptr,
        shape=(M, N),
        strides=(output_stride_0, output_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    tl.store(output_block_ptr, output, boundary_check=(0, 1))


@triton.jit
def _stochastic_rounding(output, noise, e_bit: tl.constexpr, m_bit: tl.constexpr):
    subnormal_min = tl.exp2(2 - tl.exp2(e_bit - 1) - m_bit)
    # subnormal_should_be = tl.exp2(2 - tl.exp2(e_bit) - 1)

    output_int32 = tl.cast(output, tl.int32, bitcast=True)
    output_int32 = output_int32 & 0x7F800000
    output_float32 = tl.cast(output_int32, tl.float32, bitcast=True)
    output_exp = tl.maximum(output_float32, subnormal_min)

    noise_rescale = tl.exp2(m_bit) + (output_exp == subnormal_min) * (
        1 - tl.exp2(m_bit)
    )  # 2^m_bit for normal, 1 for subnormal

    noise = output_exp * noise / noise_rescale
    sign = 1 - 2 * libdevice.signbit(output)
    output = tl.abs(output) + noise

    minmax_ratio = 2 + (output_exp == subnormal_min) * (tl.exp2(m_bit) - 2)  # 2 for normal, and 2^M for subnormal
    output = sign * tl.clamp(output, min=output_exp, max=minmax_ratio * output_exp)

    return output


def fp8_division(x, QB, fp8type, s_y=None, stochastic=False):
    # Change batched 3D input to 2D
    batched = False
    if len(x.shape) == 3:
        batched = True
        BS = x.shape[0]
        x = x.reshape(-1, x.shape[-1])

    if stochastic:
        # noise = torch.zeros_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
        noise = None
    else:
        noise = None

    # defining the input and output tensor
    M, N = x.shape
    SN = N // QB

    if isinstance(fp8type, str):
        fp8type = convert_str_to_fp8[fp8type]

    y = torch.empty_like(x, dtype=fp8type)
    fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value
    e_bit, m_bit = convert_fp8_to_embit[fp8type]

    if s_y is None:
        s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue

    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)

    _fp8_division_kernel[grid](
        y,
        x,
        s_y,
        noise,
        M,
        N,
        SN,
        QB,
        fp8MaxValue,
        e_bit,
        m_bit,
        x.stride(0),
        x.stride(1),
        y.stride(0),
        y.stride(1),
        SCALE_MIN_THRES=SCALE_MIN_THRES,
        STOCHASTIC=stochastic,
    )

    # Recover 2D to 3D
    if batched:
        y = y.reshape(BS, -1, y.shape[-1])

    return y, s_y  # y_t is expected to be 2D tensor