Spaces:
Running
on
A100
Running
on
A100
File size: 6,576 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice
from ._division import _stochastic_rounding
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
"""Division and Transpose Operator"""
"""Input uses full-precision/BF16"""
"""Output uses per tensor quantization"""
"""Output_t uses per tensor quantization and is transposed, but is flattened to 2D"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
@triton.autotune(
configs=[] + get_configs_io_block(), # triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)
# configs=[triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)], #
key=[
"N",
],
)
@triton.heuristics(
{
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
}
)
@triton.jit
def _fp8_division_transpose_kernel(
output_ptr,
output_t_ptr, # output
input_ptr,
input_scale_ptr, # input
noise_ptr, # noise for stochastic
M,
N,
SN,
QB: tl.constexpr,
fp8_max,
e_bit,
m_bit, # shape
input_stride_0,
input_stride_1, # input stride
output_stride_0,
output_stride_1, # output stride
output_t_stride_0,
output_t_stride_1, # output stride
SCALE_MIN_THRES: tl.constexpr, # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
STOCHASTIC: tl.constexpr,
ONLY_TRANSPOSED: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_SN: tl.constexpr,
): # CUDA block size
# Block PID
pid = tl.program_id(0)
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
pid_dim0 = pid // NUM_BLOCK_N
pid_dim1 = pid % NUM_BLOCK_N
# pointers
input_block_ptr = tl.make_block_ptr(
base=input_ptr,
shape=(M, N),
strides=(input_stride_0, input_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
input = tl.load(input_block_ptr)
input = input.to(tl.float32)
scale_output = tl.load(input_scale_ptr)
scale_output = scale_output.to(tl.float32)
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
# Quantize Scale calculation
# Quantize
output = tl.fdiv(output, scale_output)
output = tl.reshape(output, (BLOCK_M, BLOCK_N))
if STOCHASTIC:
# noise_block_ptr = tl.make_block_ptr(
# base=noise_ptr,
# shape=(M, N),
# strides=(input_stride_0, input_stride_1),
# offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
# block_shape=(BLOCK_M, BLOCK_N),
# order=(1, 0)
# )
# noise = tl.load(noise_block_ptr)
offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
noise = tl.rand(0, noise_offset)
output = _stochastic_rounding(output, noise, e_bit, m_bit)
output = output.to(output_ptr.type.element_ty)
# tl.device_print("3: ", output)
output_t = tl.trans(output)
# pointers
output_block_ptr = tl.make_block_ptr(
base=output_ptr,
shape=(M, N),
strides=(output_stride_0, output_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
output_t_block_ptr = tl.make_block_ptr(
base=output_t_ptr,
shape=(N, M),
strides=(output_t_stride_0, output_t_stride_1),
offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
block_shape=(BLOCK_N, BLOCK_M),
order=(1, 0),
)
if not ONLY_TRANSPOSED:
tl.store(output_block_ptr, output, boundary_check=(0, 1))
tl.store(output_t_block_ptr, output_t, boundary_check=(0, 1))
def fp8_division_transpose(x, QB, fp8type, s_y=None, stochastic=False, only_transposed=False):
# Change batched 3D input to 2D
batched = False
if len(x.shape) == 3:
batched = True
BS = x.shape[0]
x = x.reshape(-1, x.shape[-1])
if stochastic:
# noise = torch.empty_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
noise = None
else:
noise = None
# defining the input and output tensor
M, N = x.shape
SN = N // QB
if isinstance(fp8type, str):
fp8type = convert_str_to_fp8[fp8type]
y = torch.empty_like(x, dtype=fp8type)
y_t = torch.empty((N, M), dtype=fp8type, device=x.device)
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
e_bit, m_bit = convert_fp8_to_embit[fp8type]
if s_y is None:
# print("Warning: do not specify s_y in fp8_division_transpose")
s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
_fp8_division_transpose_kernel[grid](
y,
y_t,
x,
s_y,
noise,
M,
N,
SN,
QB,
fp8MaxValue,
e_bit,
m_bit,
x.stride(0),
x.stride(1),
y.stride(0),
y.stride(1),
y_t.stride(0),
y_t.stride(1),
SCALE_MIN_THRES=SCALE_MIN_THRES,
STOCHASTIC=stochastic,
ONLY_TRANSPOSED=only_transposed,
)
if not only_transposed:
# Recover 2D to 3D
if batched:
y = y.reshape(BS, -1, y.shape[-1])
return y, s_y, y_t # y_t is expected to be 2D tensor
else:
return y_t, s_y
|