Spaces:
Running
on
A100
Running
on
A100
File size: 6,622 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block
"""Element-wise Add, used in forward pass"""
"""Input1 (Residual) uses full-precision/BF16"""
"""Input2 (Backbone) uses full-precision/BF16"""
"""Output1 uses full-precision/BF16"""
"""Output2 uses 1 * 16 group quantization"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
@triton.autotune(
configs=[] + get_configs_io_block(),
key=[
"N",
],
)
@triton.heuristics(
{
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
}
)
@triton.jit
def _fp8_add_Ifp_Ifp_Ofp_Og16_kernel(
output1_ptr, # output
output2_ptr,
output2_scale_ptr,
input1_ptr, # input
input2_ptr, # input
M,
N,
SN,
QB: tl.constexpr,
fp8_max, # shape
input1_stride_0,
input1_stride_1, # input1 stride
input2_stride_0,
input2_stride_1, # input2 stride
output1_stride_0,
output1_stride_1, # output stride
output2_stride_0,
output2_stride_1, # output stride
s_output2_stride_0,
s_output2_stride_1, # scale of output stride
SCALE_MIN_THRES: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_SN: tl.constexpr,
): # CUDA block size
# Block PID
pid = tl.program_id(0)
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
pid_dim0 = pid // NUM_BLOCK_N
pid_dim1 = pid % NUM_BLOCK_N
# --- The first input ---
input1_block_ptr = tl.make_block_ptr(
base=input1_ptr,
shape=(M, N),
strides=(input1_stride_0, input1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
input1 = tl.load(input1_block_ptr)
input1 = input1.to(tl.float32)
input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
# --- The second input ---
input2_block_ptr = tl.make_block_ptr(
base=input2_ptr,
shape=(M, N),
strides=(input2_stride_0, input2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
input2 = tl.load(input2_block_ptr)
input2 = input2.to(tl.float32)
input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
# Actual Calculation of Add
add_output = input1 + input2
# Quantize the grad 1 - Scale calculation
abs_add_output = tl.abs(add_output)
max_val = tl.max(abs_add_output, axis=2) + SCALE_MIN_THRES
scale_output2 = max_val / fp8_max
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN, 1))
# save the fp add output
fp_add_output = add_output.to(output1_ptr.type.element_ty)
fp_add_output = tl.reshape(fp_add_output, (BLOCK_M, BLOCK_N))
# pointers
output1_block_ptr = tl.make_block_ptr(
base=output1_ptr,
shape=(M, N),
strides=(output1_stride_0, output1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
tl.store(output1_block_ptr, fp_add_output)
# Quantize
add_output = tl.fdiv(add_output, scale_output2)
scale_output2 = scale_output2.to(output2_scale_ptr.type.element_ty)
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN))
add_output = tl.reshape(add_output, (BLOCK_M, BLOCK_N))
add_output = add_output.to(output2_ptr.type.element_ty)
add_output = tl.reshape(add_output, (BLOCK_M, BLOCK_N))
# pointers
output2_block_ptr = tl.make_block_ptr(
base=output2_ptr,
shape=(M, N),
strides=(output2_stride_0, output2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
scale_output2_ptr = tl.make_block_ptr(
base=output2_scale_ptr,
shape=(M, SN),
strides=(s_output2_stride_0, s_output2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
tl.store(output2_block_ptr, add_output, boundary_check=(0, 1))
tl.store(scale_output2_ptr, scale_output2, boundary_check=(0, 1))
def fp8_add_Ifp_Ifp_Ofp_Og16(x1, x2, fp8type, QB): # suppose x1 is full precision or BF16
# Change batched 3D input to 2D
batched = False
if len(x1.shape) == 3:
batched = True
BS = x1.shape[0]
x1 = x1.reshape(-1, x1.shape[-1])
x2 = x2.reshape(-1, x2.shape[-1])
# defining the input and output tensor
M, N = x1.shape
SN = int(N / QB) # assume the shape of quantization block size is always 1 * G
assert x1.shape == x2.shape
y1 = torch.empty_like(x1, dtype=torch.bfloat16)
y2 = torch.empty_like(x2, dtype=fp8type)
s_y2 = torch.empty((M, SN), dtype=torch.bfloat16, device=x2.device)
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
_fp8_add_Ifp_Ifp_Ofp_Og16_kernel[grid](
y1,
y2,
s_y2,
x1,
x2,
M,
N,
SN,
QB,
fp8MaxValue,
x1.stride(0),
x1.stride(1),
x2.stride(0),
x2.stride(1),
y1.stride(0),
y1.stride(1),
y2.stride(0),
y2.stride(1),
s_y2.stride(0),
s_y2.stride(1),
SCALE_MIN_THRES=SCALE_MIN_THRES,
)
# Recover 2D to 3D
if batched:
y1 = y1.reshape(BS, -1, y1.shape[-1])
y2 = y2.reshape(BS, -1, y2.shape[-1])
s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])
return y1, (y2, s_y2)
|