Spaces:
Running
on
A100
Running
on
A100
File size: 10,208 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice
try:
from ._division import _stochastic_rounding
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8
except:
from common import SCALE_MIN_THRES, FP8_MAX_VALUE, convert_str_to_fp8, convert_fp8_to_embit
from COAT.coat.activation.real_quantization._division import _stochastic_rounding
import os
import time
"""Linear Layer Forward + Backward"""
"""Input uses per-tensor quantization"""
"""Output is full-precision/BF16 (for FlashAttention) or 1 * 16 quantization (for the rest)"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
def get_configs_io_block():
configs = []
for nstages in [3]:
for block_m in [128, 256]:
for block_n in [128, 256]:
for block_k in [128, 256]:
for nwarps in [8]:
configs.append(
triton.Config(
{"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k},
num_stages=nstages,
num_warps=nwarps,
)
)
return configs
# @triton.autotune(
# configs=get_configs_io_block(),
# key=["M", "N", "K"],
# )
@triton.jit
def _fp8matmul_kernel(
A,
B,
C,
noise_ptr, # noise for stochastic
M: tl.constexpr,
N: tl.constexpr,
K: tl.constexpr, #
stride_am,
stride_ak, #
stride_bk,
stride_bn, #
stride_cm,
stride_cn, ##
Scale_A,
Scale_B,
Scale_C,
stride_scm,
stride_scn,
output_quantize: tl.constexpr,
QB: tl.constexpr, # default to use 1 * 16 quantization
BIAS,
fp8_max: tl.constexpr,
e_bit: tl.constexpr,
m_bit: tl.constexpr,
SCALE_MIN_THRES: tl.constexpr,
STOCHASTIC: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
GROUP_M: tl.constexpr,
):
# matrix multiplication
pid = tl.program_id(0)
grid_m = tl.cdiv(M, BLOCK_M)
grid_n = tl.cdiv(N, BLOCK_N)
# re-order program ID for better L2 performance
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (pid % group_size)
pid_n = (pid % width) // (group_size)
# do matrix multiplication
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
rk = tl.arange(0, BLOCK_K)
# pointers
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
for k in tl.range(0, tl.cdiv(K, BLOCK_K)):
k_remaining = K - k * BLOCK_K
a = tl.load(A, mask=rk[None, :] < k_remaining, other=0.0)
b = tl.load(B, mask=rk[:, None] < k_remaining, other=0.0)
acc = tl.dot(a, b, acc)
A += BLOCK_K * stride_ak
B += BLOCK_K * stride_bk
scale_a = tl.load(Scale_A)
scale_b = tl.load(Scale_B)
scale_ab = scale_a.to(tl.float32) * scale_b.to(tl.float32)
# fp8 dequantize
acc = acc * scale_ab
if BIAS:
bias = tl.load(BIAS + rbn)
acc = acc + bias
# rematerialize rm and rn to save registers
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
mask = (rm < M)[:, None] & (rn < N)[None, :]
if output_quantize:
acc = tl.reshape(acc, (BLOCK_M, BLOCK_N // QB, QB))
abs_acc = tl.abs(acc)
acc_max = tl.max(abs_acc, axis=2) + SCALE_MIN_THRES
# tl.device_print("acc_max", acc_max)
acc_scale = acc_max / fp8_max
# tl.device_print("acc_scale", acc_scale)
acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB, 1))
acc = tl.fdiv(acc, acc_scale)
acc = tl.reshape(acc, (BLOCK_M, BLOCK_N))
if STOCHASTIC:
noise_block_ptr = noise_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
noise = tl.load(noise_block_ptr, boundary_check=(0, 1))
acc = _stochastic_rounding(acc, noise, e_bit, m_bit)
acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB))
acc_scale = acc_scale.to(Scale_C.type.element_ty)
acc = acc.to(C.dtype.element_ty)
rsm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rsn = pid_n * BLOCK_N // QB + tl.arange(0, BLOCK_N // QB)
Scale_C = Scale_C + (rsm[:, None] * stride_scm + rsn[None, :] * stride_scn)
tl.store(C, acc, mask=mask)
tl.store(Scale_C, acc_scale)
else:
# handles write-back with reduction-splitting
acc = acc.to(C.dtype.element_ty)
tl.store(C, acc, mask=mask)
def fp8matmul(a, b, output_quantize, scale_a, scale_b, QB, bias=None, stochastic=False):
# Deal with batched input
if len(a.shape) == 3:
BS, batched = a.shape[0], True
a = a.reshape(-1, a.shape[2])
else:
batched = False
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.is_contiguous(), "Matrix A must be contiguous"
M, K = a.shape
K, N = b.shape
fp8MaxValue = FP8_MAX_VALUE[a.dtype] # E4M3 and E5M2 have different max value
e_bit, m_bit = convert_fp8_to_embit[a.dtype]
# Allocates output.
if output_quantize:
c = torch.empty((M, N), device=a.device, dtype=a.dtype)
# c = torch.empty((M, N), device=a.device, dtype=torch.float32)
scale_c = torch.empty((M, N // QB), device=a.device, dtype=torch.bfloat16)
else:
c = torch.empty((M, N), device=a.device, dtype=torch.bfloat16)
scale_c = torch.empty(
(1, 1), device=a.device, dtype=torch.bfloat16
) # This line is useless, equivalent to scale_c = None
if stochastic:
noise = torch.empty_like(c, dtype=torch.float32).uniform_(-0.5, 0.5)
else:
noise = None
# 1D launch kernel where each block gets its own program.
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
_fp8matmul_kernel[grid](
a,
b,
c,
noise, #
M,
N,
K, #
a.stride(0),
a.stride(1), #
b.stride(0),
b.stride(1), #
c.stride(0),
c.stride(1), #
scale_a,
scale_b,
scale_c,
scale_c.stride(0),
scale_c.stride(1),
output_quantize=output_quantize,
QB=QB,
BIAS=bias,
fp8_max=fp8MaxValue,
e_bit=e_bit,
m_bit=m_bit,
SCALE_MIN_THRES=SCALE_MIN_THRES,
STOCHASTIC=stochastic,
BLOCK_M=128,
BLOCK_N=256,
BLOCK_K=128,
GROUP_M=8,
num_stages=3,
num_warps=8,
)
# Reshape output to batch
if batched:
c = c.reshape(BS, -1, N)
if output_quantize:
scale_c = scale_c.reshape(BS, -1, N // QB)
return c, scale_c
else:
if output_quantize:
scale_c = scale_c.reshape(M, N // QB)
return c, scale_c
return c
def fp8_linear_forward(x, s, w, s_w, output_quantize, QB, bias=None):
assert s.numel() == 1, f"X uses per-tensor quantization in linear forward, but the scale shape is {s.shape}"
assert s_w.numel() == 1, f"W uses per-tensor quantization in linear forward, but the scale shape is {s_w.shape}"
w_t = w.t()
return fp8matmul(x, w_t, output_quantize, s, s_w, QB, bias)
# def fp8_linear_forward(x, s, w, s_w, output_quantize, QB):
# print("you are using the wrong linear function. ")
# w_t = w.t()
# if output_quantize:
# return fp8matmul(x, w_t, True, s, s_w, QB)
# else:
# y = fp8matmul(x, w_t, False, s, s_w, QB)
# return y
def fp8_linear_backward(
x_t, s, g, s_g, g_t, w_t, s_w, QB, bias=None, stochastic=False, dgrad_quantize=False
): # dgrad_quantize=True for backward before flashattention
assert s.numel() == 1, f"X uses per-tensor quantization in linear backward, but the scale shape is {s.shape}"
assert s_g.numel() == 1, f"G uses per-tensor quantization in linear backward, but the scale shape is {s.shape}"
assert s_w.numel() == 1, f"W uses per-tensor quantization in linear backward, but the scale shape is {s_w.shape}"
batched = False
if len(g.shape) == 3: # others must be of 2D!
batched = True
BS = g.shape[0]
g = g.reshape(-1, g.shape[-1])
w_t_t = w_t.t()
x_t_t = x_t.t()
if dgrad_quantize:
y, s_y = fp8matmul(g, w_t_t, True, s_g, s_w, QB, stochastic=stochastic)
else:
y = fp8matmul(g, w_t_t, False, s_g, s_w, QB)
w_g = fp8matmul(g_t, x_t_t, False, s_g, s, QB)
if batched:
y = y.reshape(BS, -1, y.shape[-1])
if dgrad_quantize:
if s_y.numel() > 1:
s_y = s_y.reshape(BS, -1, s_y.shape[-1])
if dgrad_quantize:
return y, s_y, w_g
else:
return y, w_g
|