File size: 10,208 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import torch
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

try:
    from ._division import _stochastic_rounding
    from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8
except:
    from common import SCALE_MIN_THRES, FP8_MAX_VALUE, convert_str_to_fp8, convert_fp8_to_embit
    from COAT.coat.activation.real_quantization._division import _stochastic_rounding

import os
import time

"""Linear Layer Forward + Backward"""
"""Input uses per-tensor quantization"""
"""Output is full-precision/BF16 (for FlashAttention) or 1 * 16 quantization (for the rest)"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""


def get_configs_io_block():
    configs = []
    for nstages in [3]:
        for block_m in [128, 256]:
            for block_n in [128, 256]:
                for block_k in [128, 256]:
                    for nwarps in [8]:
                        configs.append(
                            triton.Config(
                                {"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k},
                                num_stages=nstages,
                                num_warps=nwarps,
                            )
                        )
    return configs


# @triton.autotune(
#     configs=get_configs_io_block(),
#     key=["M", "N", "K"],
# )
@triton.jit
def _fp8matmul_kernel(
    A,
    B,
    C,
    noise_ptr,  # noise for stochastic
    M: tl.constexpr,
    N: tl.constexpr,
    K: tl.constexpr,  #
    stride_am,
    stride_ak,  #
    stride_bk,
    stride_bn,  #
    stride_cm,
    stride_cn,  ##
    Scale_A,
    Scale_B,
    Scale_C,
    stride_scm,
    stride_scn,
    output_quantize: tl.constexpr,
    QB: tl.constexpr,  # default to use 1 * 16 quantization
    BIAS,
    fp8_max: tl.constexpr,
    e_bit: tl.constexpr,
    m_bit: tl.constexpr,
    SCALE_MIN_THRES: tl.constexpr,
    STOCHASTIC: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_K: tl.constexpr,
    GROUP_M: tl.constexpr,
):
    # matrix multiplication
    pid = tl.program_id(0)
    grid_m = tl.cdiv(M, BLOCK_M)
    grid_n = tl.cdiv(N, BLOCK_N)
    # re-order program ID for better L2 performance
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + (pid % group_size)
    pid_n = (pid % width) // (group_size)
    # do matrix multiplication
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
    rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
    rk = tl.arange(0, BLOCK_K)
    # pointers
    A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
    B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
    for k in tl.range(0, tl.cdiv(K, BLOCK_K)):
        k_remaining = K - k * BLOCK_K
        a = tl.load(A, mask=rk[None, :] < k_remaining, other=0.0)
        b = tl.load(B, mask=rk[:, None] < k_remaining, other=0.0)

        acc = tl.dot(a, b, acc)

        A += BLOCK_K * stride_ak
        B += BLOCK_K * stride_bk

    scale_a = tl.load(Scale_A)
    scale_b = tl.load(Scale_B)
    scale_ab = scale_a.to(tl.float32) * scale_b.to(tl.float32)
    # fp8 dequantize
    acc = acc * scale_ab

    if BIAS:
        bias = tl.load(BIAS + rbn)
        acc = acc + bias

    # rematerialize rm and rn to save registers
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
    mask = (rm < M)[:, None] & (rn < N)[None, :]

    if output_quantize:
        acc = tl.reshape(acc, (BLOCK_M, BLOCK_N // QB, QB))
        abs_acc = tl.abs(acc)
        acc_max = tl.max(abs_acc, axis=2) + SCALE_MIN_THRES
        # tl.device_print("acc_max", acc_max)
        acc_scale = acc_max / fp8_max
        # tl.device_print("acc_scale", acc_scale)
        acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB, 1))
        acc = tl.fdiv(acc, acc_scale)
        acc = tl.reshape(acc, (BLOCK_M, BLOCK_N))

        if STOCHASTIC:
            noise_block_ptr = noise_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
            noise = tl.load(noise_block_ptr, boundary_check=(0, 1))
            acc = _stochastic_rounding(acc, noise, e_bit, m_bit)

        acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB))
        acc_scale = acc_scale.to(Scale_C.type.element_ty)
        acc = acc.to(C.dtype.element_ty)

        rsm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
        rsn = pid_n * BLOCK_N // QB + tl.arange(0, BLOCK_N // QB)
        Scale_C = Scale_C + (rsm[:, None] * stride_scm + rsn[None, :] * stride_scn)

        tl.store(C, acc, mask=mask)
        tl.store(Scale_C, acc_scale)

    else:
        # handles write-back with reduction-splitting
        acc = acc.to(C.dtype.element_ty)
        tl.store(C, acc, mask=mask)


def fp8matmul(a, b, output_quantize, scale_a, scale_b, QB, bias=None, stochastic=False):
    # Deal with batched input
    if len(a.shape) == 3:
        BS, batched = a.shape[0], True
        a = a.reshape(-1, a.shape[2])
    else:
        batched = False

    # Check constraints.
    assert a.shape[1] == b.shape[0], "Incompatible dimensions"
    assert a.is_contiguous(), "Matrix A must be contiguous"
    M, K = a.shape
    K, N = b.shape
    fp8MaxValue = FP8_MAX_VALUE[a.dtype]  # E4M3 and E5M2 have different max value
    e_bit, m_bit = convert_fp8_to_embit[a.dtype]

    # Allocates output.
    if output_quantize:
        c = torch.empty((M, N), device=a.device, dtype=a.dtype)
        # c = torch.empty((M, N), device=a.device, dtype=torch.float32)
        scale_c = torch.empty((M, N // QB), device=a.device, dtype=torch.bfloat16)
    else:
        c = torch.empty((M, N), device=a.device, dtype=torch.bfloat16)
        scale_c = torch.empty(
            (1, 1), device=a.device, dtype=torch.bfloat16
        )  # This line is useless, equivalent to scale_c = None

    if stochastic:
        noise = torch.empty_like(c, dtype=torch.float32).uniform_(-0.5, 0.5)
    else:
        noise = None

    # 1D launch kernel where each block gets its own program.
    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
    _fp8matmul_kernel[grid](
        a,
        b,
        c,
        noise,  #
        M,
        N,
        K,  #
        a.stride(0),
        a.stride(1),  #
        b.stride(0),
        b.stride(1),  #
        c.stride(0),
        c.stride(1),  #
        scale_a,
        scale_b,
        scale_c,
        scale_c.stride(0),
        scale_c.stride(1),
        output_quantize=output_quantize,
        QB=QB,
        BIAS=bias,
        fp8_max=fp8MaxValue,
        e_bit=e_bit,
        m_bit=m_bit,
        SCALE_MIN_THRES=SCALE_MIN_THRES,
        STOCHASTIC=stochastic,
        BLOCK_M=128,
        BLOCK_N=256,
        BLOCK_K=128,
        GROUP_M=8,
        num_stages=3,
        num_warps=8,
    )
    # Reshape output to batch
    if batched:
        c = c.reshape(BS, -1, N)
        if output_quantize:
            scale_c = scale_c.reshape(BS, -1, N // QB)
            return c, scale_c
    else:
        if output_quantize:
            scale_c = scale_c.reshape(M, N // QB)
            return c, scale_c
    return c


def fp8_linear_forward(x, s, w, s_w, output_quantize, QB, bias=None):
    assert s.numel() == 1, f"X uses per-tensor quantization in linear forward, but the scale shape is {s.shape}"
    assert s_w.numel() == 1, f"W uses per-tensor quantization in linear forward, but the scale shape is {s_w.shape}"

    w_t = w.t()
    return fp8matmul(x, w_t, output_quantize, s, s_w, QB, bias)


# def fp8_linear_forward(x, s, w, s_w, output_quantize, QB):
#     print("you are using the wrong linear function. ")
#     w_t = w.t()
#     if output_quantize:
#         return fp8matmul(x, w_t, True, s, s_w, QB)
#     else:
#         y = fp8matmul(x, w_t, False, s, s_w, QB)

#         return y


def fp8_linear_backward(
    x_t, s, g, s_g, g_t, w_t, s_w, QB, bias=None, stochastic=False, dgrad_quantize=False
):  # dgrad_quantize=True for backward before flashattention
    assert s.numel() == 1, f"X uses per-tensor quantization in linear backward, but the scale shape is {s.shape}"
    assert s_g.numel() == 1, f"G uses per-tensor quantization in linear backward, but the scale shape is {s.shape}"
    assert s_w.numel() == 1, f"W uses per-tensor quantization in linear backward, but the scale shape is {s_w.shape}"

    batched = False
    if len(g.shape) == 3:  # others must be of 2D!
        batched = True
        BS = g.shape[0]
        g = g.reshape(-1, g.shape[-1])

    w_t_t = w_t.t()
    x_t_t = x_t.t()
    if dgrad_quantize:
        y, s_y = fp8matmul(g, w_t_t, True, s_g, s_w, QB, stochastic=stochastic)
    else:
        y = fp8matmul(g, w_t_t, False, s_g, s_w, QB)

    w_g = fp8matmul(g_t, x_t_t, False, s_g, s, QB)

    if batched:
        y = y.reshape(BS, -1, y.shape[-1])
        if dgrad_quantize:
            if s_y.numel() > 1:
                s_y = s_y.reshape(BS, -1, s_y.shape[-1])
    if dgrad_quantize:
        return y, s_y, w_g
    else:
        return y, w_g