File size: 11,868 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import torch

# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

from ._division import _stochastic_rounding
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, get_configs_io_block

"""Element-wise Multiplication Backward"""
"""Input1 (Gate) uses 1 * 16 group quantization"""
"""Input2 (Up) uses 1 * 16 group quantization"""
"""Grad (Down) uses 1 * 16 group quantization"""
"""Output1 (Gate) uses 1 * 16 quantization"""
"""Output2 (Up) uses per-tensor quantization, but should be quantized outside this function"""  # Although it is per-tensor quantization, we only apply per-group quantization here, and the reduction should be performed outside this function.
"""The input can be 2D or 3D, but the calculation is performed in 2D"""


@triton.autotune(
    configs=[] + get_configs_io_block(),
    key=[
        "N",
    ],
)
@triton.heuristics(
    {
        "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
    }
)
@triton.jit
def _fp8_mul_backward_legacy_kernel(
    output1_ptr,
    output1_scale_ptr,  # output
    output2_ptr,
    output2_scale_ptr,  # output
    input1_ptr,
    input1_scale_ptr,  # input
    input2_ptr,
    input2_scale_ptr,  # input
    grad_ptr,
    grad_scale_ptr,  # input
    noise_ptr,  # noise for stochastic
    M,
    N,
    SN,
    QB: tl.constexpr,
    fp8_max,
    e_bit,
    m_bit,  # shape
    input1_stride_0,
    input1_stride_1,  # input1 stride
    s_input1_stride_0,
    s_input1_stride_1,  # scale of input1 stride
    input2_stride_0,
    input2_stride_1,  # input2 stride
    s_input2_stride_0,
    s_input2_stride_1,  # scale of input2 stride
    grad_stride_0,
    grad_stride_1,  # input stride
    s_grad_stride_0,
    s_grad_stride_1,  # scale of input stride
    output1_stride_0,
    output1_stride_1,  # output stride
    s_output1_stride_0,
    s_output1_stride_1,  # scale of output stride
    output2_stride_0,
    output2_stride_1,  # output stride
    s_output2_stride_0,
    s_output2_stride_1,  # scale of output stride
    SCALE_MIN_THRES: tl.constexpr,
    STOCHASTIC: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_SN: tl.constexpr,
):  # CUDA block size

    # Block PID
    pid = tl.program_id(0)
    NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
    pid_dim0 = pid // NUM_BLOCK_N
    pid_dim1 = pid % NUM_BLOCK_N

    # --- The first input ---
    input1_block_ptr = tl.make_block_ptr(
        base=input1_ptr,
        shape=(M, N),
        strides=(input1_stride_0, input1_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    # input ptr
    scale_input1_ptr = tl.make_block_ptr(
        base=input1_scale_ptr,
        shape=(M, SN),
        strides=(s_input1_stride_0, s_input1_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )

    input1 = tl.load(input1_block_ptr)
    scale_input1 = tl.load(scale_input1_ptr)

    input1 = input1.to(tl.float32)
    scale_input1 = scale_input1.to(tl.float32)

    # Dequantize and mul calculation
    scale_input1 = tl.reshape(scale_input1, (BLOCK_M, BLOCK_SN, 1))
    input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
    input1 = input1 * scale_input1

    # --- The second input ---
    input2_block_ptr = tl.make_block_ptr(
        base=input2_ptr,
        shape=(M, N),
        strides=(input2_stride_0, input2_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    # input ptr
    scale_input2_ptr = tl.make_block_ptr(
        base=input2_scale_ptr,
        shape=(M, SN),
        strides=(s_input2_stride_0, s_input2_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )

    input2 = tl.load(input2_block_ptr)
    scale_input2 = tl.load(scale_input2_ptr)

    input2 = input2.to(tl.float32)
    scale_input2 = scale_input2.to(tl.float32)

    # Dequantize and mul calculation
    scale_input2 = tl.reshape(scale_input2, (BLOCK_M, BLOCK_SN, 1))
    input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
    input2 = input2 * scale_input2

    # pointers of gradient
    grad_block_ptr = tl.make_block_ptr(
        base=grad_ptr,
        shape=(M, N),
        strides=(grad_stride_0, grad_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    # grad ptr
    scale_grad_ptr = tl.make_block_ptr(
        base=grad_scale_ptr,
        shape=(M, SN),
        strides=(s_grad_stride_0, s_grad_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )

    grad = tl.load(grad_block_ptr)
    scale_grad = tl.load(scale_grad_ptr)

    grad = grad.to(tl.float32)
    scale_grad = scale_grad.to(tl.float32)

    # Dequantize and swish calculation
    scale_grad = tl.reshape(scale_grad, (BLOCK_M, BLOCK_SN, 1))
    grad = tl.reshape(grad, (BLOCK_M, BLOCK_SN, QB))
    grad = grad * scale_grad

    # Actual Calculation of Mul Backward
    grad1 = grad * input2
    # Quantize the grad 1 - Scale calculation
    abs_grad1 = tl.abs(grad1)
    max_val = tl.max(abs_grad1, axis=2) + SCALE_MIN_THRES
    scale_grad1 = max_val / fp8_max
    scale_grad1 = tl.reshape(scale_grad1, (BLOCK_M, BLOCK_SN, 1))
    # Quantize
    grad1 = tl.fdiv(grad1, scale_grad1)  # do not quantize the output due to the data flow
    scale_grad1 = scale_grad1.to(output1_scale_ptr.type.element_ty)
    scale_grad1 = tl.reshape(scale_grad1, (BLOCK_M, BLOCK_SN))
    grad1 = tl.reshape(grad1, (BLOCK_M, BLOCK_N))

    if STOCHASTIC:
        # noise_block_ptr = tl.make_block_ptr(
        #     base=noise_ptr,
        #     shape=(M, N),
        #     strides=(input1_stride_0, input1_stride_1),
        #     offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        #     block_shape=(BLOCK_M, BLOCK_N),
        #     order=(1, 0)
        # )
        # noise = tl.load(noise_block_ptr)

        offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
        offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
        noise_offset = offs_m[:, None] * input1_stride_0 + offs_n[None, :] * input1_stride_1
        noise = tl.rand(0, noise_offset)

        grad1 = _stochastic_rounding(grad1, noise, e_bit, m_bit)

    grad1 = grad1.to(output1_ptr.type.element_ty)

    # pointers
    output1_block_ptr = tl.make_block_ptr(
        base=output1_ptr,
        shape=(M, N),
        strides=(output1_stride_0, output1_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )
    scale_output1_ptr = tl.make_block_ptr(
        base=output1_scale_ptr,
        shape=(M, SN),
        strides=(s_output1_stride_0, s_output1_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )
    tl.store(output1_block_ptr, grad1, boundary_check=(0, 1))
    tl.store(scale_output1_ptr, scale_grad1, boundary_check=(0, 1))

    # Actual Calculation of Mul Backward
    grad2 = grad * input1
    # Quantize the grad 1 - Scale calculation
    abs_grad2 = tl.abs(grad2)
    max_val = tl.max(abs_grad2, axis=2) + SCALE_MIN_THRES
    scale_grad2 = max_val / fp8_max
    scale_grad2 = tl.reshape(scale_grad2, (BLOCK_M, BLOCK_SN, 1))
    # Quantize
    # grad1 = tl.fdiv(grad1, scale_output) # do not quantize the output due to the data flow
    grad2 = grad2.to(output2_ptr.type.element_ty)
    scale_grad2 = scale_grad2.to(output2_scale_ptr.type.element_ty)
    scale_grad2 = tl.reshape(scale_grad2, (BLOCK_M, BLOCK_SN))
    grad2 = tl.reshape(grad2, (BLOCK_M, BLOCK_N))

    # pointers
    output2_block_ptr = tl.make_block_ptr(
        base=output2_ptr,
        shape=(M, N),
        strides=(output2_stride_0, output2_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )
    scale_output2_ptr = tl.make_block_ptr(
        base=output2_scale_ptr,
        shape=(M, SN),
        strides=(s_output2_stride_0, s_output2_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )
    tl.store(output2_block_ptr, grad2, boundary_check=(0, 1))
    tl.store(scale_output2_ptr, scale_grad2, boundary_check=(0, 1))


def fp8_mul_backward_legacy(
    x1, s_x1, x2, s_x2, g, s_g, QB, stochastic=False
):  # Stochastic Rounding is left outside this function
    # Change batched 3D input to 2D
    batched = False
    if len(x1.shape) == 3:
        assert len(s_x1.shape) == 3
        batched = True
        BS = x1.shape[0]
        x1 = x1.reshape(-1, x1.shape[-1])
        s_x1 = s_x1.reshape(-1, s_x1.shape[-1])
        x2 = x2.reshape(-1, x2.shape[-1])
        s_x2 = s_x2.reshape(-1, s_x2.shape[-1])
        g = g.reshape(-1, g.shape[-1])
        s_g = s_g.reshape(-1, s_g.shape[-1])

    if stochastic:
        noise = torch.empty_like(g, dtype=torch.float32).uniform_(-0.5, 0.5)
    else:
        noise = None

    # defining the input and output tensor
    M, N = x1.shape
    _, SN = s_x1.shape  # assume the shape of quantization block size is always 1 * G
    assert x1.shape == x2.shape
    assert s_x1.shape == s_x2.shape

    y1 = torch.empty_like(g, dtype=g.dtype)
    s_y1 = torch.empty_like(s_g, dtype=s_g.dtype)
    y2 = torch.empty_like(g, dtype=torch.bfloat16)
    s_y2 = torch.empty_like(s_g, dtype=s_g.dtype)
    fp8MaxValue = FP8_MAX_VALUE[g.dtype]  # E4M3 and E5M2 have different max value
    e_bit, m_bit = convert_fp8_to_embit[g.dtype]

    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)

    _fp8_mul_backward_legacy_kernel[grid](
        y1,
        s_y1,
        y2,
        s_y2,
        x1,
        s_x1,
        x2,
        s_x2,
        g,
        s_g,
        noise,
        M,
        N,
        SN,
        QB,
        fp8MaxValue,
        e_bit,
        m_bit,
        x1.stride(0),
        x1.stride(1),
        s_x1.stride(0),
        s_x1.stride(1),
        x2.stride(0),
        x2.stride(1),
        s_x2.stride(0),
        s_x2.stride(1),
        g.stride(0),
        g.stride(1),
        s_g.stride(0),
        s_g.stride(1),
        y1.stride(0),
        y1.stride(1),
        s_y1.stride(0),
        s_y1.stride(1),
        y2.stride(0),
        y2.stride(1),
        s_y2.stride(0),
        s_y2.stride(1),
        SCALE_MIN_THRES=SCALE_MIN_THRES,
        STOCHASTIC=stochastic,
    )

    # Recover 2D to 3D
    if batched:
        y1 = y1.reshape(BS, -1, y1.shape[-1])
        s_y1 = s_y1.reshape(BS, -1, s_y1.shape[-1])

        y2 = y2.reshape(BS, -1, y2.shape[-1])
        s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])

    return y1, s_y1, y2, s_y2