Spaces:
Running
on
A100
Running
on
A100
File size: 11,868 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice
from ._division import _stochastic_rounding
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, get_configs_io_block
"""Element-wise Multiplication Backward"""
"""Input1 (Gate) uses 1 * 16 group quantization"""
"""Input2 (Up) uses 1 * 16 group quantization"""
"""Grad (Down) uses 1 * 16 group quantization"""
"""Output1 (Gate) uses 1 * 16 quantization"""
"""Output2 (Up) uses per-tensor quantization, but should be quantized outside this function""" # Although it is per-tensor quantization, we only apply per-group quantization here, and the reduction should be performed outside this function.
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
@triton.autotune(
configs=[] + get_configs_io_block(),
key=[
"N",
],
)
@triton.heuristics(
{
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
}
)
@triton.jit
def _fp8_mul_backward_legacy_kernel(
output1_ptr,
output1_scale_ptr, # output
output2_ptr,
output2_scale_ptr, # output
input1_ptr,
input1_scale_ptr, # input
input2_ptr,
input2_scale_ptr, # input
grad_ptr,
grad_scale_ptr, # input
noise_ptr, # noise for stochastic
M,
N,
SN,
QB: tl.constexpr,
fp8_max,
e_bit,
m_bit, # shape
input1_stride_0,
input1_stride_1, # input1 stride
s_input1_stride_0,
s_input1_stride_1, # scale of input1 stride
input2_stride_0,
input2_stride_1, # input2 stride
s_input2_stride_0,
s_input2_stride_1, # scale of input2 stride
grad_stride_0,
grad_stride_1, # input stride
s_grad_stride_0,
s_grad_stride_1, # scale of input stride
output1_stride_0,
output1_stride_1, # output stride
s_output1_stride_0,
s_output1_stride_1, # scale of output stride
output2_stride_0,
output2_stride_1, # output stride
s_output2_stride_0,
s_output2_stride_1, # scale of output stride
SCALE_MIN_THRES: tl.constexpr,
STOCHASTIC: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_SN: tl.constexpr,
): # CUDA block size
# Block PID
pid = tl.program_id(0)
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
pid_dim0 = pid // NUM_BLOCK_N
pid_dim1 = pid % NUM_BLOCK_N
# --- The first input ---
input1_block_ptr = tl.make_block_ptr(
base=input1_ptr,
shape=(M, N),
strides=(input1_stride_0, input1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
# input ptr
scale_input1_ptr = tl.make_block_ptr(
base=input1_scale_ptr,
shape=(M, SN),
strides=(s_input1_stride_0, s_input1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
input1 = tl.load(input1_block_ptr)
scale_input1 = tl.load(scale_input1_ptr)
input1 = input1.to(tl.float32)
scale_input1 = scale_input1.to(tl.float32)
# Dequantize and mul calculation
scale_input1 = tl.reshape(scale_input1, (BLOCK_M, BLOCK_SN, 1))
input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
input1 = input1 * scale_input1
# --- The second input ---
input2_block_ptr = tl.make_block_ptr(
base=input2_ptr,
shape=(M, N),
strides=(input2_stride_0, input2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
# input ptr
scale_input2_ptr = tl.make_block_ptr(
base=input2_scale_ptr,
shape=(M, SN),
strides=(s_input2_stride_0, s_input2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
input2 = tl.load(input2_block_ptr)
scale_input2 = tl.load(scale_input2_ptr)
input2 = input2.to(tl.float32)
scale_input2 = scale_input2.to(tl.float32)
# Dequantize and mul calculation
scale_input2 = tl.reshape(scale_input2, (BLOCK_M, BLOCK_SN, 1))
input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
input2 = input2 * scale_input2
# pointers of gradient
grad_block_ptr = tl.make_block_ptr(
base=grad_ptr,
shape=(M, N),
strides=(grad_stride_0, grad_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
# grad ptr
scale_grad_ptr = tl.make_block_ptr(
base=grad_scale_ptr,
shape=(M, SN),
strides=(s_grad_stride_0, s_grad_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
grad = tl.load(grad_block_ptr)
scale_grad = tl.load(scale_grad_ptr)
grad = grad.to(tl.float32)
scale_grad = scale_grad.to(tl.float32)
# Dequantize and swish calculation
scale_grad = tl.reshape(scale_grad, (BLOCK_M, BLOCK_SN, 1))
grad = tl.reshape(grad, (BLOCK_M, BLOCK_SN, QB))
grad = grad * scale_grad
# Actual Calculation of Mul Backward
grad1 = grad * input2
# Quantize the grad 1 - Scale calculation
abs_grad1 = tl.abs(grad1)
max_val = tl.max(abs_grad1, axis=2) + SCALE_MIN_THRES
scale_grad1 = max_val / fp8_max
scale_grad1 = tl.reshape(scale_grad1, (BLOCK_M, BLOCK_SN, 1))
# Quantize
grad1 = tl.fdiv(grad1, scale_grad1) # do not quantize the output due to the data flow
scale_grad1 = scale_grad1.to(output1_scale_ptr.type.element_ty)
scale_grad1 = tl.reshape(scale_grad1, (BLOCK_M, BLOCK_SN))
grad1 = tl.reshape(grad1, (BLOCK_M, BLOCK_N))
if STOCHASTIC:
# noise_block_ptr = tl.make_block_ptr(
# base=noise_ptr,
# shape=(M, N),
# strides=(input1_stride_0, input1_stride_1),
# offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
# block_shape=(BLOCK_M, BLOCK_N),
# order=(1, 0)
# )
# noise = tl.load(noise_block_ptr)
offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
noise_offset = offs_m[:, None] * input1_stride_0 + offs_n[None, :] * input1_stride_1
noise = tl.rand(0, noise_offset)
grad1 = _stochastic_rounding(grad1, noise, e_bit, m_bit)
grad1 = grad1.to(output1_ptr.type.element_ty)
# pointers
output1_block_ptr = tl.make_block_ptr(
base=output1_ptr,
shape=(M, N),
strides=(output1_stride_0, output1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
scale_output1_ptr = tl.make_block_ptr(
base=output1_scale_ptr,
shape=(M, SN),
strides=(s_output1_stride_0, s_output1_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
tl.store(output1_block_ptr, grad1, boundary_check=(0, 1))
tl.store(scale_output1_ptr, scale_grad1, boundary_check=(0, 1))
# Actual Calculation of Mul Backward
grad2 = grad * input1
# Quantize the grad 1 - Scale calculation
abs_grad2 = tl.abs(grad2)
max_val = tl.max(abs_grad2, axis=2) + SCALE_MIN_THRES
scale_grad2 = max_val / fp8_max
scale_grad2 = tl.reshape(scale_grad2, (BLOCK_M, BLOCK_SN, 1))
# Quantize
# grad1 = tl.fdiv(grad1, scale_output) # do not quantize the output due to the data flow
grad2 = grad2.to(output2_ptr.type.element_ty)
scale_grad2 = scale_grad2.to(output2_scale_ptr.type.element_ty)
scale_grad2 = tl.reshape(scale_grad2, (BLOCK_M, BLOCK_SN))
grad2 = tl.reshape(grad2, (BLOCK_M, BLOCK_N))
# pointers
output2_block_ptr = tl.make_block_ptr(
base=output2_ptr,
shape=(M, N),
strides=(output2_stride_0, output2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
block_shape=(BLOCK_M, BLOCK_N),
order=(1, 0),
)
scale_output2_ptr = tl.make_block_ptr(
base=output2_scale_ptr,
shape=(M, SN),
strides=(s_output2_stride_0, s_output2_stride_1),
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
block_shape=(BLOCK_M, BLOCK_SN),
order=(1, 0),
)
tl.store(output2_block_ptr, grad2, boundary_check=(0, 1))
tl.store(scale_output2_ptr, scale_grad2, boundary_check=(0, 1))
def fp8_mul_backward_legacy(
x1, s_x1, x2, s_x2, g, s_g, QB, stochastic=False
): # Stochastic Rounding is left outside this function
# Change batched 3D input to 2D
batched = False
if len(x1.shape) == 3:
assert len(s_x1.shape) == 3
batched = True
BS = x1.shape[0]
x1 = x1.reshape(-1, x1.shape[-1])
s_x1 = s_x1.reshape(-1, s_x1.shape[-1])
x2 = x2.reshape(-1, x2.shape[-1])
s_x2 = s_x2.reshape(-1, s_x2.shape[-1])
g = g.reshape(-1, g.shape[-1])
s_g = s_g.reshape(-1, s_g.shape[-1])
if stochastic:
noise = torch.empty_like(g, dtype=torch.float32).uniform_(-0.5, 0.5)
else:
noise = None
# defining the input and output tensor
M, N = x1.shape
_, SN = s_x1.shape # assume the shape of quantization block size is always 1 * G
assert x1.shape == x2.shape
assert s_x1.shape == s_x2.shape
y1 = torch.empty_like(g, dtype=g.dtype)
s_y1 = torch.empty_like(s_g, dtype=s_g.dtype)
y2 = torch.empty_like(g, dtype=torch.bfloat16)
s_y2 = torch.empty_like(s_g, dtype=s_g.dtype)
fp8MaxValue = FP8_MAX_VALUE[g.dtype] # E4M3 and E5M2 have different max value
e_bit, m_bit = convert_fp8_to_embit[g.dtype]
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
_fp8_mul_backward_legacy_kernel[grid](
y1,
s_y1,
y2,
s_y2,
x1,
s_x1,
x2,
s_x2,
g,
s_g,
noise,
M,
N,
SN,
QB,
fp8MaxValue,
e_bit,
m_bit,
x1.stride(0),
x1.stride(1),
s_x1.stride(0),
s_x1.stride(1),
x2.stride(0),
x2.stride(1),
s_x2.stride(0),
s_x2.stride(1),
g.stride(0),
g.stride(1),
s_g.stride(0),
s_g.stride(1),
y1.stride(0),
y1.stride(1),
s_y1.stride(0),
s_y1.stride(1),
y2.stride(0),
y2.stride(1),
s_y2.stride(0),
s_y2.stride(1),
SCALE_MIN_THRES=SCALE_MIN_THRES,
STOCHASTIC=stochastic,
)
# Recover 2D to 3D
if batched:
y1 = y1.reshape(BS, -1, y1.shape[-1])
s_y1 = s_y1.reshape(BS, -1, s_y1.shape[-1])
y2 = y2.reshape(BS, -1, y2.shape[-1])
s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])
return y1, s_y1, y2, s_y2
|