File size: 29,950 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# In this file I only add the logic in line 411 to 415. The rest remains unchanged compared with the original Trainer Class.

import math
import os
import shutil
import time
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from packaging import version
from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler
from transformers import Trainer
from transformers.debug_utils import DebugOption, DebugUnderflowOverflow
from transformers.integrations import hp_params
from transformers.integrations.deepspeed import deepspeed_init, deepspeed_load_checkpoint, is_deepspeed_available
from transformers.integrations.tpu import tpu_spmd_dataloader
from transformers.trainer_callback import ExportableState, TrainerState
from transformers.trainer_pt_utils import get_model_param_count
from transformers.trainer_utils import HPSearchBackend, TrainOutput, has_length, speed_metrics
from transformers.training_args import OptimizerNames, ParallelMode, TrainingArguments
from transformers.utils import (
    is_accelerate_available,
    is_apex_available,
    is_bitsandbytes_available,
    is_datasets_available,
    is_galore_torch_available,
    is_grokadamw_available,
    is_in_notebook,
    is_ipex_available,
    is_liger_kernel_available,
    is_lomo_available,
    is_peft_available,
    is_safetensors_available,
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
    is_schedulefree_available,
    is_torch_compile_available,
    is_torch_mlu_available,
    is_torch_mps_available,
    is_torch_musa_available,
    is_torch_neuroncore_available,
    is_torch_npu_available,
    is_torch_xla_available,
    is_torch_xpu_available,
    is_torchao_available,
    logging,
)

if is_apex_available():
    from apex import amp

if is_datasets_available():
    import datasets

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    from torch_xla import __version__ as XLA_VERSION

    IS_XLA_FSDPV2_POST_2_2 = version.parse(XLA_VERSION) >= version.parse(XLA_FSDPV2_MIN_VERSION)
    if IS_XLA_FSDPV2_POST_2_2:
        import torch_xla.distributed.spmd as xs
        import torch_xla.runtime as xr
else:
    IS_XLA_FSDPV2_POST_2_2 = False


if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")

    from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat
else:
    IS_SAGEMAKER_MP_POST_1_10 = False


if is_safetensors_available():
    import safetensors.torch

if is_peft_available():
    from peft import PeftModel


if is_accelerate_available():
    from accelerate import Accelerator
    from accelerate import __version__ as accelerate_version
    from accelerate import skip_first_batches
    from accelerate.utils import (
        DistributedDataParallelKwargs,
        DistributedType,
        GradientAccumulationPlugin,
        load_fsdp_model,
        load_fsdp_optimizer,
        save_fsdp_model,
        save_fsdp_optimizer,
    )

    DATA_SAMPLERS = [RandomSampler]
    if version.parse(accelerate_version) > version.parse("0.23.0"):
        from accelerate.data_loader import SeedableRandomSampler

        DATA_SAMPLERS += [SeedableRandomSampler]

    if is_deepspeed_available():
        from accelerate.utils import DeepSpeedSchedulerWrapper

if is_accelerate_available("0.28.0"):
    from accelerate.utils import DataLoaderConfiguration

from .activation.models._fp8manager import FP8Manager

logger = logging.get_logger(__name__)


class CoatFP8Trainer(Trainer):
    def _inner_training_loop(
        self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None
    ):
        self.accelerator.free_memory()
        self._train_batch_size = batch_size
        if self.args.auto_find_batch_size:
            if self.state.train_batch_size != self._train_batch_size:
                from accelerate.utils import release_memory

                (self.model_wrapped,) = release_memory(self.model_wrapped)
                self.model_wrapped = self.model

                # Check for DeepSpeed *after* the intial pass and modify the config
                if self.is_deepspeed_enabled:
                    # Temporarily unset `self.args.train_batch_size`
                    original_bs = self.args.per_device_train_batch_size
                    self.args.per_device_train_batch_size = self._train_batch_size // max(1, self.args.n_gpu)
                    self.propagate_args_to_deepspeed(True)
                    self.args.per_device_train_batch_size = original_bs
            self.state.train_batch_size = self._train_batch_size
        logger.debug(f"Currently training with a batch size of: {self._train_batch_size}")
        # Data loader and number of training steps
        train_dataloader = self.get_train_dataloader()
        if self.is_fsdp_xla_v2_enabled:
            train_dataloader = tpu_spmd_dataloader(train_dataloader)

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
        total_train_batch_size = self._train_batch_size * args.gradient_accumulation_steps * args.world_size

        len_dataloader = None
        num_train_tokens = None
        if has_length(train_dataloader):
            len_dataloader = len(train_dataloader)
            num_update_steps_per_epoch = len_dataloader // args.gradient_accumulation_steps
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
            num_examples = self.num_examples(train_dataloader)
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
                )
                # May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
                if args.include_tokens_per_second:
                    num_train_tokens = (
                        self.num_tokens(train_dataloader, args.max_steps) * args.gradient_accumulation_steps
                    )
            else:
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
                num_train_samples = self.num_examples(train_dataloader) * args.num_train_epochs
                if args.include_tokens_per_second:
                    num_train_tokens = self.num_tokens(train_dataloader) * args.num_train_epochs
        elif args.max_steps > 0:  # Rely on max_steps when dataloader does not have a working size
            max_steps = args.max_steps
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
            num_update_steps_per_epoch = max_steps
            num_examples = total_train_batch_size * args.max_steps
            num_train_samples = args.max_steps * total_train_batch_size
            if args.include_tokens_per_second:
                num_train_tokens = self.num_tokens(train_dataloader, args.max_steps) * args.gradient_accumulation_steps
        else:
            raise ValueError(
                "args.max_steps must be set to a positive value if dataloader does not have a length, was"
                f" {args.max_steps}"
            )

        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
            if self.args.n_gpu > 1:
                # nn.DataParallel(model) replicates the model, creating new variables and module
                # references registered here no longer work on other gpus, breaking the module
                raise ValueError(
                    "Currently --debug underflow_overflow is not supported under DP. Please use DDP"
                    " (torchrun or torch.distributed.launch (deprecated))."
                )
            else:
                debug_overflow = DebugUnderflowOverflow(self.model)  # noqa

        delay_optimizer_creation = is_sagemaker_mp_enabled() or self.is_fsdp_xla_enabled or self.is_fsdp_enabled

        # We need to reset the scheduler, as its parameters may be different on subsequent calls
        if self._created_lr_scheduler:
            self.lr_scheduler = None
            self._created_lr_scheduler = False

        if self.is_deepspeed_enabled:
            self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps)

        if not delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        self.state = TrainerState(
            stateful_callbacks=[
                cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
            ]
        )
        self.state.is_hyper_param_search = trial is not None
        self.state.train_batch_size = self._train_batch_size

        # Compute absolute values for logging, eval, and save if given as ratio
        if args.logging_steps is not None:
            if args.logging_steps < 1:
                self.state.logging_steps = math.ceil(max_steps * args.logging_steps)
            else:
                self.state.logging_steps = args.logging_steps
        if args.eval_steps is not None:
            if args.eval_steps < 1:
                self.state.eval_steps = math.ceil(max_steps * args.eval_steps)
            else:
                self.state.eval_steps = args.eval_steps
        if args.save_steps is not None:
            if args.save_steps < 1:
                self.state.save_steps = math.ceil(max_steps * args.save_steps)
            else:
                self.state.save_steps = args.save_steps

        # Activate gradient checkpointing if needed
        if args.gradient_checkpointing:
            self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=args.gradient_checkpointing_kwargs)

        model = self._wrap_model(self.model_wrapped)

        # as the model is wrapped, don't use `accelerator.prepare`
        # this is for unhandled cases such as
        # FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
        use_accelerator_prepare = True if model is self.model else False

        if delay_optimizer_creation:
            if use_accelerator_prepare:
                self._fsdp_qlora_plugin_updates()
                self.model = self.accelerator.prepare(self.model)
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

        # prepare using `accelerator` prepare
        if use_accelerator_prepare:
            self.model.train()
            if hasattr(self.lr_scheduler, "step"):
                if self.use_apex:
                    model = self.accelerator.prepare(self.model)
                else:
                    model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
            else:
                # to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config.
                model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
                    self.model, self.optimizer, self.lr_scheduler
                )
        elif self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
            # In this case we are in DDP + LOMO, which should be supported
            self.optimizer = self.accelerator.prepare(self.optimizer)

        if self.is_fsdp_enabled:
            self.model = self.model_wrapped = model

        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

        # backward compatibility
        if self.is_deepspeed_enabled:
            self.deepspeed = self.model_wrapped

        # ckpt loading
        if resume_from_checkpoint is not None:
            if self.is_deepspeed_enabled:
                deepspeed_load_checkpoint(
                    self.model_wrapped, resume_from_checkpoint, load_module_strict=not _is_peft_model(self.model)
                )
            elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled:
                self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped)

        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

        # important: at this point:
        # self.model         is the Transformers Model
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model),
        # FSDP(Transformers Model), Dynamo Optimized Module(Transformers Model) etc.

        # Train!
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {num_examples:,}")
        logger.info(f"  Num Epochs = {num_train_epochs:,}")
        logger.info(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}")
        if self.args.per_device_train_batch_size != self._train_batch_size:
            logger.info(f"  Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}")
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {max_steps:,}")
        logger.info(f"  Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}")

        self.state.epoch = 0
        start_time = time.time()
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        steps_trained_progress_bar = None

        # Check if continuing training from a checkpoint
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
            self.compare_trainer_and_checkpoint_args(self.args, self.state)
            self._load_callback_state()
            epochs_trained = int(self.state.global_step // num_update_steps_per_epoch)
            if not args.ignore_data_skip:
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
            else:
                steps_trained_in_current_epoch = 0

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
            if not args.ignore_data_skip:
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first"
                    f" {steps_trained_in_current_epoch} batches in the first epoch."
                )

        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
        if self.hp_name is not None and self._trial is not None:
            # use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
            # parameter to Train when using DDP.
            self.state.trial_name = self.hp_name(self._trial)
        if trial is not None:
            assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
            self.state.trial_params = hp_params(assignments)
        else:
            self.state.trial_params = None
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
        tr_loss = torch.tensor(0.0).to(args.device)
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
        self._globalstep_last_logged = self.state.global_step
        model.zero_grad()
        grad_norm: Optional[float] = None
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        if args.eval_on_start:
            self._evaluate(trial, ignore_keys_for_eval, skip_scheduler=True)

        total_batched_samples = 0
        for epoch in range(epochs_trained, num_train_epochs):
            epoch_iterator = train_dataloader
            if hasattr(epoch_iterator, "set_epoch"):
                epoch_iterator.set_epoch(epoch)

            # Reset the past mems state at the beginning of each epoch if necessary.
            if args.past_index >= 0:
                self._past = None

            steps_in_epoch = (
                len(epoch_iterator) if len_dataloader is not None else args.max_steps * args.gradient_accumulation_steps
            )
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)

            if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0:
                self._load_rng_state(resume_from_checkpoint)

            rng_to_sync = False
            steps_skipped = 0
            if steps_trained_in_current_epoch > 0:
                epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch)
                steps_skipped = steps_trained_in_current_epoch
                steps_trained_in_current_epoch = 0
                rng_to_sync = True

            step = -1
            for step, inputs in enumerate(epoch_iterator):
                # NOTE: FP8 related
                if total_batched_samples % args.gradient_accumulation_steps == 0:
                    FP8Manager.is_first_microbatch = True
                else:
                    FP8Manager.is_first_microbatch = False

                total_batched_samples += 1

                if self.args.include_num_input_tokens_seen:
                    main_input_name = getattr(self.model, "main_input_name", "input_ids")
                    if main_input_name not in inputs:
                        logger.warning(
                            "Tried to track the number of tokens seen, however the current model is "
                            "not configured properly to know what item is the input. To fix this, add "
                            "a `main_input_name` attribute to the model class you are using."
                        )
                    else:
                        self.state.num_input_tokens_seen += (
                            torch.sum(
                                self.accelerator.gather(
                                    torch.tensor(
                                        inputs[main_input_name].numel(), device=self.args.device, dtype=torch.int64
                                    )
                                )
                            )
                            .cpu()
                            .item()
                        )
                if rng_to_sync:
                    self._load_rng_state(resume_from_checkpoint)
                    rng_to_sync = False

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
                    continue
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None

                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)

                with self.accelerator.accumulate(model):
                    tr_loss_step = self.training_step(model, inputs)

                if (
                    args.logging_nan_inf_filter
                    and not is_torch_xla_available()
                    and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
                ):
                    # if loss is nan or inf simply add the average of previous logged losses
                    tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
                else:
                    if tr_loss.device != tr_loss_step.device:
                        raise ValueError(
                            f"Calculated loss must be on the original device: {tr_loss.device} but device in use is {tr_loss_step.device}"
                        )
                    tr_loss += tr_loss_step

                self.current_flos += float(self.floating_point_ops(inputs))

                is_last_step_and_steps_less_than_grad_acc = (
                    steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch
                )

                if (
                    total_batched_samples % args.gradient_accumulation_steps == 0
                    or
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    is_last_step_and_steps_less_than_grad_acc
                ):
                    # the `or` condition of `is_last_step_and_steps_less_than_grad_acc` is not covered
                    # in accelerate. So, explicitly enable sync gradients to True in that case.
                    if is_last_step_and_steps_less_than_grad_acc:
                        self.accelerator.gradient_state._set_sync_gradients(True)

                    # Gradient clipping
                    if args.max_grad_norm is not None and args.max_grad_norm > 0:
                        # deepspeed does its own clipping

                        if is_sagemaker_mp_enabled() and args.fp16:
                            _grad_norm = self.optimizer.clip_master_grads(args.max_grad_norm)
                        elif self.use_apex:
                            # Revert to normal clipping otherwise, handling Apex or full precision
                            _grad_norm = nn.utils.clip_grad_norm_(
                                amp.master_params(self.optimizer),
                                args.max_grad_norm,
                            )
                        else:
                            _grad_norm = self.accelerator.clip_grad_norm_(
                                model.parameters(),
                                args.max_grad_norm,
                            )

                        if is_accelerate_available() and self.accelerator.distributed_type == DistributedType.DEEPSPEED:
                            grad_norm = model.get_global_grad_norm()
                            # In some cases the grad norm may not return a float
                            if hasattr(grad_norm, "item"):
                                grad_norm = grad_norm.item()
                        else:
                            grad_norm = _grad_norm

                    self.control = self.callback_handler.on_pre_optimizer_step(args, self.state, self.control)

                    self.optimizer.step()

                    self.control = self.callback_handler.on_optimizer_step(args, self.state, self.control)

                    optimizer_was_run = not self.accelerator.optimizer_step_was_skipped
                    if optimizer_was_run:
                        # Delay optimizer scheduling until metrics are generated
                        if not isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
                            self.lr_scheduler.step()

                    model.zero_grad()
                    self.state.global_step += 1
                    self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)

                    self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)

                if self.control.should_epoch_stop or self.control.should_training_stop:
                    # PyTorch/XLA relies on the data loader to insert the mark_step for
                    # each step. Since we are breaking the loop early, we need to manually
                    # insert the mark_step here.
                    if is_torch_xla_available():
                        xm.mark_step()
                    break
            if step < 0:
                logger.warning(
                    "There seems not to be a single sample in your epoch_iterator, stopping training at step"
                    f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
                    f" num_steps ({max_steps}) higher than the number of available samples."
                )
                self.control.should_training_stop = True

            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
            self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)

            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
                if is_torch_xla_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
            if self.control.should_training_stop:
                break

        if args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
            # Wait for everyone to get here so we are sure the model has been saved by process 0.
            if is_torch_xla_available():
                xm.rendezvous("load_best_model_at_end")
            elif args.parallel_mode == ParallelMode.DISTRIBUTED:
                dist.barrier()
            elif is_sagemaker_mp_enabled():
                smp.barrier()

            self._load_best_model()

        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        effective_global_step = max(self.state.global_step, 0.001)  # Avoid ZeroDivisionError
        train_loss = self._total_loss_scalar / effective_global_step

        metrics = speed_metrics(
            "train",
            start_time,
            num_samples=num_train_samples,
            num_steps=self.state.max_steps,
            num_tokens=num_train_tokens,
        )
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
        metrics["train_loss"] = train_loss

        self.is_in_train = False

        self._memory_tracker.stop_and_update_metrics(metrics)

        self.log(metrics)

        run_dir = self._get_output_dir(trial)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir)

        # Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
        if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1:
            for checkpoint in checkpoints_sorted:
                if not os.path.samefile(checkpoint, self.state.best_model_checkpoint):
                    logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
                    shutil.rmtree(checkpoint, ignore_errors=True)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        # Wait for the checkpoint to be uploaded.
        self._finish_current_push()

        # After training we make sure to retrieve back the original forward pass method
        # for the embedding layer by removing the forward post hook.
        if self.neftune_noise_alpha is not None:
            self._deactivate_neftune(self.model)

        return TrainOutput(self.state.global_step, train_loss, metrics)