Spaces:
Running
on
A100
Running
on
A100
File size: 18,650 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from collections import OrderedDict, defaultdict
from copy import deepcopy
from itertools import chain
from typing import Any, DefaultDict, Dict, Hashable, Iterable, List, Optional, Tuple, Union
import qoptim_cuda
import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer
from typing_extensions import ParamSpec, Self, TypeAlias
StateDict: TypeAlias = Dict[str, Any]
convert_str_to_fp8 = {"E4M3": torch.float8_e4m3fn, "E5M2": torch.float8_e5m2}
class CoatAdamW(Optimizer):
def __init__(
self,
qargs,
params,
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 1e-2,
amsgrad: bool = False,
*,
fused: Optional[bool] = None,
):
self.qargs = qargs
assert self.qargs.first_order_expansion == self.qargs.second_order_expansion
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
amsgrad=amsgrad,
fused=fused,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("amsgrad", False)
fused = group.setdefault("fused", None)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
step_val = float(p_state["step"])
p_state["step"] = torch.tensor(step_val, dtype=torch.float32)
def _init_group(
self,
group,
params_with_grad,
grads,
amsgrad,
use_expansion,
exp_avgs,
scale_exp_avgs,
expand_exp_avgs,
sqrt_minmax_exp_avgs,
exp_avg_sqs,
scale_exp_avg_sqs,
expand_exp_avg_sqs,
sqrt_minmax_exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
):
for p in group["params"]:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("AdamW does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# print(f'Param shape: {p.shape}', file=open('debug.txt', 'a'))
# print(f'Param shape: {p.shape}, {p.device}')
# State initialization
if len(state) == 0:
# This is because kernel launches are costly on CUDA and XLA.
state["step"] = torch.tensor(0.0)
# Should be torch.float8_e4m3fn
first_order_dtype = convert_str_to_fp8[self.qargs.first_order_bit]
second_order_dtype = convert_str_to_fp8[self.qargs.second_order_bit]
scale_shape = (p.numel() + self.qargs.qgroup_size - 1) // self.qargs.qgroup_size
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p, dtype=first_order_dtype, memory_format=torch.preserve_format)
state["scale_exp_avg"] = torch.zeros(scale_shape, device=p.device, dtype=p.dtype)
if use_expansion:
state["expand_exp_avg"] = torch.ones(scale_shape, device=p.device, dtype=p.dtype)
state["sqrt_minmax_exp_avg"] = torch.ones(scale_shape, device=p.device, dtype=p.dtype)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p, dtype=second_order_dtype, memory_format=torch.preserve_format)
state["scale_exp_avg_sq"] = torch.zeros(scale_shape, device=p.device, dtype=p.dtype)
if use_expansion:
state["expand_exp_avg_sq"] = torch.ones(scale_shape, device=p.device, dtype=p.dtype)
state["sqrt_minmax_exp_avg_sq"] = torch.ones(scale_shape, device=p.device, dtype=p.dtype)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros(p, memory_format=torch.preserve_format)
exp_avgs.append(state["exp_avg"])
scale_exp_avgs.append(state["scale_exp_avg"])
if use_expansion:
expand_exp_avgs.append(state["expand_exp_avg"])
sqrt_minmax_exp_avgs.append(state["sqrt_minmax_exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
scale_exp_avg_sqs.append(state["scale_exp_avg_sq"])
if use_expansion:
expand_exp_avg_sqs.append(state["expand_exp_avg_sq"])
sqrt_minmax_exp_avg_sqs.append(state["sqrt_minmax_exp_avg_sq"])
if group["amsgrad"]:
max_exp_avg_sqs.append(state["max_exp_avg_sq"])
state_steps.append(state["step"])
@torch._disable_dynamo
def load_state_dict(self, state_dict: StateDict) -> None:
r"""Loads the optimizer state.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# shallow copy, to be consistent with module API
state_dict = state_dict.copy()
for pre_hook in self._optimizer_load_state_dict_pre_hooks.values():
hook_result = pre_hook(self, state_dict)
if hook_result is not None:
state_dict = hook_result
# Validate the state_dict
groups = self.param_groups
# Deepcopy as we write into saved_groups later to update state
saved_groups = deepcopy(state_dict["param_groups"])
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of " "parameter groups")
param_lens = (len(g["params"]) for g in groups)
saved_lens = (len(g["params"]) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError(
"loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group"
)
# Update the state
id_map = dict(
zip(
chain.from_iterable(g["params"] for g in saved_groups), chain.from_iterable(g["params"] for g in groups)
)
)
def _cast(param, value, param_id=None, param_groups=None, key=None):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
return CoatAdamW._process_value_according_to_param_policy(param, value, param_id, param_groups, key)
elif isinstance(value, dict):
return {
k: _cast(param, v, param_id=param_id, param_groups=param_groups, key=k) for k, v in value.items()
}
elif isinstance(value, Iterable):
return type(value)(_cast(param, v, param_id=param_id, param_groups=param_groups) for v in value) # type: ignore[call-arg]
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state: DefaultDict[torch.Tensor, Dict[Any, Any]] = defaultdict(dict)
for k, v in state_dict["state"].items():
if k in id_map:
param = id_map[k]
state[param] = _cast(param, v, param_id=k, param_groups=state_dict["param_groups"])
else:
state[k] = v
# Update parameter groups, setting their 'params' value
def update_group(group: Dict[str, Any], new_group: Dict[str, Any]) -> Dict[str, Any]:
new_group["params"] = group["params"]
return new_group
param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({"state": state, "param_groups": param_groups})
for post_hook in self._optimizer_load_state_dict_post_hooks.values():
post_hook(self)
@staticmethod
def _process_value_according_to_param_policy(
param: torch.Tensor,
value: torch.Tensor,
param_id: int,
param_groups: List[Dict[Any, Any]],
key: Hashable = None,
) -> torch.Tensor:
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
# UNLESS fused or capturable, see note [special device hosting for step]
fused = False
capturable = False
assert param_groups is not None
for pg in param_groups:
if param_id in pg["params"]:
fused = pg["fused"] if "fused" in pg else False
capturable = pg["capturable"] if "capturable" in pg else False
break
if key == "step":
if capturable or fused:
return value.to(dtype=torch.float32, device=param.device)
else:
return value
else:
assert value.dtype in [torch.float8_e4m3fn, torch.float8_e5m2, torch.float32]
return value.to(device=param.device) # do not cast optimizer states
# if param.is_floating_point():
# return value.to(dtype=param.dtype, device=param.device)
# else:
# return value.to(device=param.device)
@torch.no_grad()
def step(self, closure=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
scale_exp_avgs = []
expand_exp_avgs = []
sqrt_minmax_exp_avgs = []
exp_avg_sqs = []
scale_exp_avg_sqs = []
expand_exp_avg_sqs = []
sqrt_minmax_exp_avg_sqs = []
max_exp_avg_sqs = []
state_steps = []
amsgrad = group["amsgrad"]
use_expansion = self.qargs.first_order_expansion in ["expansion", "true"]
beta1, beta2 = group["betas"]
self._init_group(
group,
params_with_grad,
grads,
amsgrad,
use_expansion,
exp_avgs,
scale_exp_avgs,
expand_exp_avgs,
sqrt_minmax_exp_avgs,
exp_avg_sqs,
scale_exp_avg_sqs,
expand_exp_avg_sqs,
sqrt_minmax_exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
)
Coatadamw(
self.qargs,
params_with_grad,
grads,
exp_avgs,
scale_exp_avgs,
expand_exp_avgs,
sqrt_minmax_exp_avgs,
exp_avg_sqs,
scale_exp_avg_sqs,
expand_exp_avg_sqs,
sqrt_minmax_exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
use_expansion=use_expansion,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
eps=group["eps"],
qgroup_size=self.qargs.qgroup_size,
expand_min=self.qargs.expand_min,
fused=group["fused"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
)
return loss
def Coatadamw(
qargs,
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
scale_exp_avgs: List[Tensor],
expand_exp_avgs: List[Tensor],
sqrt_minmax_exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
scale_exp_avg_sqs: List[Tensor],
expand_exp_avg_sqs: List[Tensor],
sqrt_minmax_exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
fused: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
*,
amsgrad: bool,
use_expansion: bool,
beta1: float,
beta2: float,
lr: Union[float, Tensor],
weight_decay: float,
eps: float,
qgroup_size: int,
expand_min: int,
):
r"""Functional API that performs AdamW algorithm computation.
See :class:`~torch.optim.AdamW` for details.
"""
if not torch._utils.is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
func = _single_tensor_Coatadamw
func(
qargs,
params,
grads,
exp_avgs,
scale_exp_avgs,
expand_exp_avgs,
sqrt_minmax_exp_avgs,
exp_avg_sqs,
scale_exp_avg_sqs,
expand_exp_avg_sqs,
sqrt_minmax_exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
use_expansion=use_expansion,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
eps=eps,
qgroup_size=qgroup_size,
expand_min=expand_min,
grad_scale=grad_scale,
found_inf=found_inf,
)
def _dispatch_sqrt(x: float): # float annotation is needed because of torchscript type inference
if not torch.jit.is_scripting() and isinstance(x, torch.Tensor):
return x.sqrt()
else:
return sqrt(x)
def _single_tensor_Coatadamw(
qargs,
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
scale_exp_avgs: List[Tensor],
expand_exp_avgs: List[Tensor],
sqrt_minmax_exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
scale_exp_avg_sqs: List[Tensor],
expand_exp_avg_sqs: List[Tensor],
sqrt_minmax_exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
amsgrad: bool,
use_expansion: bool,
beta1: float,
beta2: float,
lr: Union[Tensor, float],
weight_decay: float,
eps: float,
qgroup_size: int,
expand_min: int,
):
assert grad_scale is None and found_inf is None
if torch.jit.is_scripting():
# this assert is due to JIT being dumb and not realizing that the ops below
# have overloads to handle both float and Tensor lrs, so we just assert it's
# a float since most people using JIT are using floats
assert isinstance(lr, float)
for i, param in enumerate(params):
grad = grads[i]
# First order
exp_avg = exp_avgs[i]
scale_exp_avg = scale_exp_avgs[i]
# Second order
exp_avg_sq = exp_avg_sqs[i]
scale_exp_avg_sq = scale_exp_avg_sqs[i]
step_t = state_steps[i]
# print(len(exp_avg.unique()), len(exp_avg_sq.unique()))
# print(f"{param.shape}, {grad.shape}, {exp_avg.shape}, {exp_avg_sq.shape}", file=open('debug.txt', 'a'))
# update step
step_t += 1
step = int(step_t.item())
# Perform Optimizer Step
if use_expansion:
expand_exp_avg = expand_exp_avgs[i]
sqrt_minmax_exp_avg = sqrt_minmax_exp_avgs[i]
expand_exp_avg_sq = expand_exp_avg_sqs[i]
sqrt_minmax_exp_avg_sq = sqrt_minmax_exp_avg_sqs[i]
qoptim_cuda.fp8_adamw_expand_step(
param,
grad,
exp_avg,
scale_exp_avg,
expand_exp_avg,
sqrt_minmax_exp_avg,
exp_avg_sq,
scale_exp_avg_sq,
expand_exp_avg_sq,
sqrt_minmax_exp_avg_sq,
beta1,
beta2,
lr,
weight_decay,
eps,
step,
qgroup_size,
expand_min,
)
else:
qoptim_cuda.fp8_adamw_step(
param,
grad,
exp_avg,
scale_exp_avg,
exp_avg_sq,
scale_exp_avg_sq,
beta1,
beta2,
lr,
weight_decay,
eps,
step,
qgroup_size,
)
|