File size: 4,894 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from typing import Literal, Optional

from pydantic import BaseModel, Field
from transformers import PretrainedConfig


class LlavaConfig(PretrainedConfig):
    model_type = "llava"

    def __init__(
        self,
        llm_cfg=None,
        vision_tower_cfg=None,
        speech_tower_cfg=None,
        sound_tower_cfg=None,
        mm_projector_cfg=None,
        speech_mm_projector_cfg=None,
        sound_mm_projector_cfg=None,
        architectures=None,
        resume_path=None,
        hidden_size=None,
        mm_hidden_size=None,
        speech_hidden_size=None,
        sound_hidden_size=None,
        image_aspect_ratio=None,
        num_video_frames=None,
        fps=None,
        mm_vision_select_layer=None,
        mm_vision_select_feature=None,
        mm_use_im_start_end=False,
        mm_use_im_patch_token=False,
        mm_projector_lr=None,
        speech_mm_projector_lr=None,
        sound_mm_projector_lr=None,
        vision_tower_lr=None,
        speech_tower_lr=None,
        sound_tower_lr=None,
        vision_resolution=None,
        interpolate_mode=None,
        s2=None,
        dynamic_s2=None,
        s2_scales=None,
        s2_max_split_size=None,
        s2_resize_output_to_scale_idx=0,
        min_tiles: Optional[int] = 1,
        max_tiles: Optional[int] = 12,
        video_max_tiles: Optional[int] = 1,
        num_time_tokens=None,
        time_token_format=None,
        image_encoder: str = '{"_target_": "llava.model.encoders.BasicImageEncoder"}',
        video_encoder: str = '{"_target_": "llava.model.encoders.BasicVideoEncoder"}',
        speech_encoder: str = '{"_target_": "llava.model.encoders.BasicSpeechEncoder"}',
        sound_encoder: str = '{"_target_": "llava.model.encoders.BasicSoundEncoder"}',
        **kwargs,
    ):
        super().__init__()
        self.architectures = architectures
        self.llm_cfg = llm_cfg
        self.vision_tower_cfg = vision_tower_cfg
        self.speech_tower_cfg = speech_tower_cfg
        self.sound_tower_cfg = sound_tower_cfg
        self.mm_projector_cfg = mm_projector_cfg
        self.speech_mm_projector_cfg = speech_mm_projector_cfg
        self.sound_mm_projector_cfg = sound_mm_projector_cfg
        self.resume_path = resume_path

        self.hidden_size = hidden_size
        self.mm_hidden_size = mm_hidden_size
        self.speech_hidden_size = speech_hidden_size
        self.sound_hidden_size = sound_hidden_size
        self.image_aspect_ratio = image_aspect_ratio
        self.num_video_frames = num_video_frames
        self.fps = fps
        self.mm_vision_select_layer = mm_vision_select_layer
        self.mm_vision_select_feature = mm_vision_select_feature
        self.mm_use_im_start_end = mm_use_im_start_end
        self.mm_use_im_patch_token = mm_use_im_patch_token
        self.mm_projector_lr = mm_projector_lr
        self.speech_mm_projector_lr = speech_mm_projector_lr
        self.sound_mm_projector_lr = sound_mm_projector_lr
        self.vision_tower_lr = vision_tower_lr
        self.speech_tower_lr = speech_tower_lr
        self.sound_tower_lr = sound_tower_lr
        self.vision_resolution = vision_resolution
        self.interpolate_mode = interpolate_mode
        self.s2 = s2
        self.dynamic_s2 = dynamic_s2
        self.s2_scales = s2_scales
        self.s2_max_split_size = s2_max_split_size
        self.s2_resize_output_to_scale_idx = s2_resize_output_to_scale_idx
        self.min_tiles = min_tiles
        self.max_tiles = max_tiles
        self.video_max_tiles = video_max_tiles
        self.num_time_tokens = num_time_tokens
        self.time_token_format = time_token_format

        self.image_encoder = image_encoder
        self.video_encoder = video_encoder
        self.speech_encoder = speech_encoder
        self.sound_encoder = sound_encoder


class JsonSchemaResponseFormat(BaseModel):
    schema_: str = Field(alias="schema")


class ResponseFormat(BaseModel):
    type: Literal["text", "json_object", "json_schema"]
    json_schema: Optional[JsonSchemaResponseFormat] = None