Spaces:
Running
on
A100
Running
on
A100
File size: 9,011 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import math
import os
import os.path as osp
import warnings
from dataclasses import asdict
from typing import Tuple
import torch
from huggingface_hub import file_exists, repo_exists
from huggingface_hub.utils import HFValidationError
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForVision2Seq,
AutoTokenizer,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizer,
)
from llava.constants import MEDIA_TOKENS
from llava.model.utils import packing
from llava.utils.logging import logger
from llava.utils.tokenizer import infer_stop_tokens
def has_tokenizer(repo_id_or_path: str) -> bool:
# Check if the tokenizer is in a local directory
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
return True
# Check if the tokenizer is in a Hugging Face Hub repo
try:
return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json")
except HFValidationError:
return False
def context_length_extension(config):
orig_ctx_len = getattr(config, "max_position_embeddings", None)
model_max_length = getattr(config, "model_max_length", None)
if orig_ctx_len and model_max_length > orig_ctx_len:
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
return config
def build_llm_and_tokenizer(
model_name_or_path: str,
config: PretrainedConfig,
attn_implementation=None,
model_max_length=None,
*args,
**kwargs,
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
# print(model_name_or_path)
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
llm_cfg._attn_implementation = attn_implementation
llm_cfg.model_max_length = model_max_length
if model_max_length is not None:
context_length_extension(llm_cfg)
# Quantization related
quantization_restore_from_checkpoint = False
if kwargs.get("quantize_model_class") is not None:
assert kwargs.get("model_args") is not None
quantize_model_class = kwargs.pop("quantize_model_class", None)
model_args = kwargs.pop("model_args", None)
if quantize_model_class == "QLlamaForCausalLM": # TODO: Also change the name of this class
from .qllama import QLlamaConfig
llm_cfg.architectures = "QLlamaForCausalLM"
_attn_implementation = llm_cfg._attn_implementation
llm_cfg = QLlamaConfig(**llm_cfg.to_dict())
llm_cfg._attn_implementation = _attn_implementation
elif quantize_model_class == "QMemLlamaForCausalLM": # TODO: Also change the name of this class
from .qmemllama import QMemLlamaConfig
llm_cfg.architectures = "QMemLlamaForCausalLM"
llm_cfg = QMemLlamaConfig(**llm_cfg.to_dict())
elif quantize_model_class == "FP8LinearQwen2ForCausalLM":
from .configuration_quantize import QuantizationConfig
from .fp8linearqwen2 import FP8LinearQwen2Config
llm_cfg.architectures = "FP8LinearQwen2ForCausalLM"
coat_fp8_args = QuantizationConfig(**asdict(model_args))
# Remove the quantization args from llm_cfg and make it a independent config
model_args_dict = asdict(model_args)
for key in asdict(coat_fp8_args).keys():
model_args_dict.pop(key, None)
llm_cfg.coat_fp8_args = asdict(coat_fp8_args)
_attn_implementation = llm_cfg._attn_implementation
llm_cfg = FP8LinearQwen2Config(**llm_cfg.to_dict())
llm_cfg._attn_implementation = _attn_implementation
elif quantize_model_class == "FP8ActivationQwen2ForCausalLM":
from ..coat.activation.models._fp8_quantization_config import QuantizationConfig
from .fp8activationqwen2 import FP8ActivationQwen2Config
quantization_restore_from_checkpoint = True
llm_cfg.architectures = "FP8ActivationQwen2ForCausalLM"
coat_fp8_args = QuantizationConfig(**asdict(model_args))
# Remove the quantization args from llm_cfg and make it a independent config
model_args_dict = asdict(model_args)
for key in asdict(coat_fp8_args).keys():
model_args_dict.pop(key, None)
llm_cfg.coat_fp8_args = asdict(coat_fp8_args)
_attn_implementation = llm_cfg._attn_implementation
llm_cfg = FP8ActivationQwen2Config(**llm_cfg.to_dict())
llm_cfg._attn_implementation = _attn_implementation
elif quantize_model_class == "FP8ActivationResidualQwen2ForCausalLM":
from ..coat.activation.models._fp8_quantization_config import QuantizationConfig
from .fp8activationresidualqwen2 import FP8ActivationResidualQwen2Config
quantization_restore_from_checkpoint = True
llm_cfg.architectures = "FP8ActivationResidualQwen2ForCausalLM"
coat_fp8_args = QuantizationConfig(**asdict(model_args))
# Remove the quantization args from llm_cfg and make it a independent config
model_args_dict = asdict(model_args)
for key in asdict(coat_fp8_args).keys():
model_args_dict.pop(key, None)
llm_cfg.coat_fp8_args = asdict(coat_fp8_args)
_attn_implementation = llm_cfg._attn_implementation
llm_cfg = FP8ActivationResidualQwen2Config(**llm_cfg.to_dict())
llm_cfg._attn_implementation = _attn_implementation
else:
raise ValueError(f"{quantize_model_class} is not supported quantize_model_class.")
kwargs.pop("quantize_model_class", None)
if quantize_model_class in [
"FP8LinearQwen2ForCausalLM",
"FP8ActivationQwen2ForCausalLM",
"FP8ActivationResidualQwen2ForCausalLM",
]: # Remove the quantization args from llm_cfg and make it a independent config
llm_cfg.update(model_args_dict)
else:
llm_cfg.update(asdict(model_args))
# print(model_args)
if quantization_restore_from_checkpoint:
fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None)
llm = AutoModelForCausalLM.from_pretrained(
model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
)
else:
llm = AutoModelForCausalLM.from_pretrained(
model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
)
packing.patch(llm)
# Locate the tokenizer.
llm_path = model_name_or_path
if not has_tokenizer(llm_path):
llm_path = osp.join(llm_path, "llm")
if not has_tokenizer(llm_path):
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False)
if model_max_length is not None:
tokenizer.model_max_length = model_max_length
# Load chat template if specified.
if getattr(config, "chat_template", None) is not None:
logger.info(f"Using chat template: {config.chat_template}")
fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
with open(fpath) as fd:
chat_template = fd.read()
tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
# Set stop tokens for the tokenizer
tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)
# Add media tokens to the tokenizer
tokenizer.media_tokens = MEDIA_TOKENS
tokenizer.media_token_ids = {}
for name, token in MEDIA_TOKENS.items():
tokenizer.add_tokens([token], special_tokens=True)
tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)
# TODO(ligeng): is this necessary for llava?
config.hidden_size = llm.config.hidden_size
return llm, tokenizer
|