File size: 6,365 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

# This file is modified from https://github.com/haotian-liu/LLaVA/


import os
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union

import torch
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast

from llava.model.loss import soft_cross_entropy
from llava.model.utils.packing import set_seqlens_in_batch
from llava.train.sequence_parallel.globals import get_pg_manager
from llava.utils.logging import logger

from ...train.utils import calculate_loss_weight
from ..configuration_llava import LlavaConfig
from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel


class LlavaLlamaConfig(LlavaConfig):
    model_type = "llava_llama"


# FIXME we will follow the convention to add a new class for CausalLM in the future
class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel):
    config_class = LlavaLlamaConfig
    main_input_name = "input_embeds"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True

    def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None:
        super().__init__(config)
        self.init_vlm(config=config, *args, **kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
        if hasattr(cls, "load_pretrained"):
            return cls.load_pretrained(
                pretrained_model_name_or_path,
                *model_args,
                config=config,
                cache_dir=cache_dir,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                force_download=force_download,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                use_safetensors=use_safetensors,
                **kwargs,
            )
        return super(LlavaLlamaModel).from_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            **kwargs,
        )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        media: Optional[Dict[str, List[torch.Tensor]]] = None,
        images: Optional[torch.FloatTensor] = None,
        media_config: Optional[List] = None,
        attention_mask: Optional[torch.Tensor] = None,
        media_meta: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        packing: bool = True,
        force_packing: bool = False,
        seqlens_in_batch: Optional[torch.LongTensor] = None,
        dpo_forward: bool = False,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        self.freezed_module_patch()

        if images is not None:
            if media is not None:
                raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
            logger.warning("The 'images' argument is deprecated. Please use 'media' instead.")
            media = {"image": images}

        if media_config is None:
            media_config = defaultdict(dict)
        if inputs_embeds is None:
            inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask,media_meta)

        if force_packing or (packing and self.training and not dpo_forward):
            if seqlens_in_batch is None:
                seqlens_in_batch = torch.sum(attention_mask, dim=1)
            set_seqlens_in_batch(seqlens_in_batch)

            (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
                inputs_embeds, attention_mask, position_ids, labels
            )

        outputs = self.llm(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            labels=labels,
            **kwargs,
        )

        if self.training and getattr(self.config, "time_token_ids", []):
            outputs.loss = soft_cross_entropy(
                outputs.logits,
                labels,
                soft_tokens=self.config.time_token_ids,
                std=self.config.soft_ce_std,
            )

        # Loss rescale for SP
        if get_pg_manager() is not None:
            loss_weight = calculate_loss_weight(labels)
            outputs.loss = outputs.loss * loss_weight

        if dpo_forward:
            return outputs.logits, labels

        return outputs


AutoConfig.register("llava_llama", LlavaLlamaConfig)
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)