Spaces:
Running
on
A100
Running
on
A100
File size: 28,829 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import math
import os
import time
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_flash_attention_utils import _flash_attention_forward
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaDynamicNTKScalingRotaryEmbedding,
LlamaFlashAttention2,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaLinearScalingRotaryEmbedding,
LlamaMLP,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
LlamaSdpaAttention,
apply_rotary_pos_emb,
repeat_kv,
rotate_half,
)
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..qlinear_te import QLinearTE
try:
import transformer_engine.pytorch as te
except:
pass
from ..quantization import QGELU, QAct_FPin, QAct_FPout, QAdd, QIdentity, QLayerNorm, QLinear, QMul
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "QMemLlamaConfig"
class QMemLlamaConfig(LlamaConfig):
model_type = "qmemllama"
class QLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6, args=None, layer_type=None):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
self.qargs = args
self.QAct_layernorm_in = QAct_FPout(args, layer_type=layer_type + "_in")
self.QAct_layernorm_out = QAct_FPin(args, layer_type=layer_type + "_out")
def forward(self, hidden_states, s):
hidden_states = self.QAct_layernorm_in(hidden_states, s)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = self.weight * hidden_states.to(input_dtype)
hidden_states, s = self.QAct_layernorm_out(hidden_states)
return hidden_states, s
ALL_LAYERNORM_LAYERS.append(QLlamaRMSNorm)
class QMemLlamaMLP(LlamaMLP):
def __init__(self, config, layer_idx):
super().__init__(config)
self.layer_idx = layer_idx
self.gate_proj = QLinear(
self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_gate"
)
self.up_proj = QLinear(self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_up")
self.down_proj = QLinear(
self.intermediate_size, self.hidden_size, bias=False, args=config, layer_type="mlp_down"
)
self.act_fn = ACT2FN[config.hidden_act]
self.QAct_act_sum = QAct_FPout(config, layer_type="mlp_act_sum")
self.QAct_act_gate = QAct_FPin(config, layer_type="mlp_act_gate")
self.QAct_act_up = QAct_FPin(config, layer_type="mlp_act_up")
self.QAct_act_in = QAct_FPout(config, layer_type="mlp_act_in")
self.QAct_act_out = QAct_FPin(config, layer_type="mlp_act_out")
self.QMul_act = QMul(config, layer_type="mul_act")
def forward(self, x, s):
if self.config.pretraining_tp > 1:
raise ValueError("Currently Quantization is not implemented for tensor parallel for simplicity")
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
]
down_proj = sum(down_proj)
else:
# down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
x = self.QAct_act_sum(x, s)
x_gate, s_gate = self.QAct_act_gate(x)
x_up, s_up = self.QAct_act_up(x)
x_gate, s_gate = self.gate_proj(x_gate, s_gate)
x_gate = self.QAct_act_in(x_gate, s_gate)
x_gate = self.act_fn(x_gate)
x_gate, s_gate = self.QAct_act_out(x_gate)
x_up, s_up = self.up_proj(x_up, s_up)
x, s = self.QMul_act(x_gate, x_up, s_gate, s_up)
down_proj, s = self.down_proj(x, s)
return down_proj, s
class QMemLlamaAttention(LlamaAttention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: QMemLlamaConfig, layer_idx):
super().__init__(config)
self.layer_idx = layer_idx
self.q_proj = QLinear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_q",
)
self.k_proj = QLinear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_k",
)
self.v_proj = QLinear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
args=config,
layer_type="attn_v",
)
self.o_proj = QLinear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=config.attention_bias,
args=config,
layer_type="attn_proj",
)
self.QAct_qkv_sum = QAct_FPout(config, layer_type="attn_qkv_sum")
self.QAct_q_in = QAct_FPin(config, layer_type="attn_q_in")
self.QAct_k_in = QAct_FPin(config, layer_type="attn_k_in")
self.QAct_v_in = QAct_FPin(config, layer_type="attn_v_in")
self.QAct_q_out = QAct_FPout(config, layer_type="attn_q_out")
self.QAct_k_out = QAct_FPout(config, layer_type="attn_k_out")
self.QAct_v_out = QAct_FPout(config, layer_type="attn_v_out")
self.QAct_proj_in = QAct_FPin(config, layer_type="attn_proj_in")
class QMemLlamaFlashAttention2(QMemLlamaAttention):
"""
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def forward(
self,
hidden_states: torch.Tensor,
s: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
hidden_states = self.QAct_qkv_sum(hidden_states, s)
q, sq = self.QAct_q_in(hidden_states)
k, sk = self.QAct_k_in(hidden_states)
v, sv = self.QAct_v_in(hidden_states)
query_states, sq = self.q_proj(q, sq)
key_states, sk = self.k_proj(k, sk)
value_states, sv = self.v_proj(v, sv)
query_states = self.QAct_q_out(query_states, sq)
key_states = self.QAct_k_out(key_states, sk)
value_states = self.QAct_v_out(value_states, sv)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = attn_output.to(torch.float32)
attn_output, s = self.QAct_proj_in(attn_output)
attn_output, s = self.o_proj(attn_output, s)
if not output_attentions:
attn_weights = None
return attn_output, s, attn_weights, past_key_value
class QMemLlamaSdpaAttention(QMemLlamaAttention):
"""
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
s: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
hidden_states = self.QAct_qkv_sum(hidden_states, s)
q, sq = self.QAct_q_in(hidden_states)
k, sk = self.QAct_k_in(hidden_states)
v, sv = self.QAct_v_in(hidden_states)
query_states, sq = self.q_proj(q, sq)
key_states, sk = self.k_proj(k, sk)
value_states, sv = self.v_proj(v, sv)
query_states = self.QAct_q_out(query_states, sq)
key_states = self.QAct_k_out(key_states, sk)
value_states = self.QAct_v_out(value_states, sv)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
# attn_output = attn_output.to(torch.float32)
attn_output, s = self.QAct_proj_in(attn_output)
attn_output, s = self.o_proj(attn_output, s)
return attn_output, s, None, past_key_value
QMemLLAMA_ATTENTION_CLASSES = {
"eager": QMemLlamaAttention,
"flash_attention_2": QMemLlamaFlashAttention2,
"sdpa": QMemLlamaSdpaAttention,
}
class QMemLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: QMemLlamaConfig, layer_idx):
super().__init__(config, layer_idx=layer_idx)
self.hidden_size = config.hidden_size
self.self_attn = QMemLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = QMemLlamaMLP(config, layer_idx)
self.input_layernorm = QLlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_attn"
)
self.post_attention_layernorm = QLlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_mlp"
)
self.QAdd_attn = QAdd(config, layer_type="add_attn")
self.QAdd_mlp = QAdd(config, layer_type="add_mlp")
self.QAct_reattnout_fx = QAct_FPin(config, layer_type="re_attn_out_fx")
self.QAct_reattnout_re = QAct_FPin(config, layer_type="re_attn_out_re")
self.QAct_remlpout_fx = QAct_FPin(config, layer_type="re_mlp_out_fx")
self.QAct_remlpout_re = QAct_FPin(config, layer_type="re_mlp_out_re")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual, res = self.QAct_reattnout_re(hidden_states)
hidden_states, s = self.QAct_reattnout_fx(hidden_states)
hidden_states, s = self.input_layernorm(hidden_states, s)
# Self Attention
hidden_states, s, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
s=s,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.QAdd_attn(residual, hidden_states, res, s)
# Fully Connected
residual, res = self.QAct_remlpout_re(hidden_states)
hidden_states, s = self.QAct_remlpout_fx(hidden_states)
hidden_states, s = self.post_attention_layernorm(hidden_states, s)
hidden_states, s = self.mlp(hidden_states, s)
hidden_states = self.QAdd_mlp(residual, hidden_states, res, s)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class QMemLlamaPreTrainedModel(LlamaPreTrainedModel):
config_class = QMemLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["QMemLlamaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear) or isinstance(module, QLinearTE):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class QMemLlamaModel(QMemLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: QMemLlamaConfig
"""
def __init__(self, config: QMemLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[QMemLlamaDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
_update_causal_mask = LlamaModel._update_causal_mask
forward = LlamaModel.forward
class QMemLlamaForCausalLM(QMemLlamaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = QMemLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.forward_step_id = 0
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
forward = LlamaForCausalLM.forward
prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation
class QMemLlamaForSequenceClassification(QMemLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = QMemLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
forward = LlamaForSequenceClassification.forward
AutoConfig.register("qmemllama", QMemLlamaConfig)
AutoModel.register(QMemLlamaConfig, QMemLlamaModel)
AutoModelForCausalLM.register(QMemLlamaConfig, QMemLlamaForCausalLM)
|