File size: 28,829 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import math
import os
import time
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_flash_attention_utils import _flash_attention_forward
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
    LlamaAttention,
    LlamaDecoderLayer,
    LlamaDynamicNTKScalingRotaryEmbedding,
    LlamaFlashAttention2,
    LlamaForCausalLM,
    LlamaForSequenceClassification,
    LlamaLinearScalingRotaryEmbedding,
    LlamaMLP,
    LlamaModel,
    LlamaPreTrainedModel,
    LlamaRMSNorm,
    LlamaRotaryEmbedding,
    LlamaSdpaAttention,
    apply_rotary_pos_emb,
    repeat_kv,
    rotate_half,
)
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from ..qlinear_te import QLinearTE

try:
    import transformer_engine.pytorch as te
except:
    pass

from ..quantization import QGELU, QAct_FPin, QAct_FPout, QAdd, QIdentity, QLayerNorm, QLinear, QMul

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "QMemLlamaConfig"


class QMemLlamaConfig(LlamaConfig):
    model_type = "qmemllama"


class QLlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6, args=None, layer_type=None):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps
        self.qargs = args
        self.QAct_layernorm_in = QAct_FPout(args, layer_type=layer_type + "_in")
        self.QAct_layernorm_out = QAct_FPin(args, layer_type=layer_type + "_out")

    def forward(self, hidden_states, s):
        hidden_states = self.QAct_layernorm_in(hidden_states, s)

        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        hidden_states = self.weight * hidden_states.to(input_dtype)

        hidden_states, s = self.QAct_layernorm_out(hidden_states)
        return hidden_states, s


ALL_LAYERNORM_LAYERS.append(QLlamaRMSNorm)


class QMemLlamaMLP(LlamaMLP):
    def __init__(self, config, layer_idx):
        super().__init__(config)
        self.layer_idx = layer_idx

        self.gate_proj = QLinear(
            self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_gate"
        )
        self.up_proj = QLinear(self.hidden_size, self.intermediate_size, bias=False, args=config, layer_type="mlp_up")
        self.down_proj = QLinear(
            self.intermediate_size, self.hidden_size, bias=False, args=config, layer_type="mlp_down"
        )
        self.act_fn = ACT2FN[config.hidden_act]

        self.QAct_act_sum = QAct_FPout(config, layer_type="mlp_act_sum")
        self.QAct_act_gate = QAct_FPin(config, layer_type="mlp_act_gate")

        self.QAct_act_up = QAct_FPin(config, layer_type="mlp_act_up")

        self.QAct_act_in = QAct_FPout(config, layer_type="mlp_act_in")
        self.QAct_act_out = QAct_FPin(config, layer_type="mlp_act_out")

        self.QMul_act = QMul(config, layer_type="mul_act")

    def forward(self, x, s):
        if self.config.pretraining_tp > 1:
            raise ValueError("Currently Quantization is not implemented for tensor parallel for simplicity")
            slice = self.intermediate_size // self.config.pretraining_tp
            gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
            up_proj_slices = self.up_proj.weight.split(slice, dim=0)
            down_proj_slices = self.down_proj.weight.split(slice, dim=1)

            gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
            up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)

            intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
            down_proj = [
                F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
            ]
            down_proj = sum(down_proj)
        else:
            # down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
            x = self.QAct_act_sum(x, s)
            x_gate, s_gate = self.QAct_act_gate(x)
            x_up, s_up = self.QAct_act_up(x)
            x_gate, s_gate = self.gate_proj(x_gate, s_gate)
            x_gate = self.QAct_act_in(x_gate, s_gate)
            x_gate = self.act_fn(x_gate)
            x_gate, s_gate = self.QAct_act_out(x_gate)

            x_up, s_up = self.up_proj(x_up, s_up)
            x, s = self.QMul_act(x_gate, x_up, s_gate, s_up)
            down_proj, s = self.down_proj(x, s)
        return down_proj, s


class QMemLlamaAttention(LlamaAttention):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: QMemLlamaConfig, layer_idx):
        super().__init__(config)
        self.layer_idx = layer_idx

        self.q_proj = QLinear(
            self.hidden_size,
            self.num_heads * self.head_dim,
            bias=config.attention_bias,
            args=config,
            layer_type="attn_q",
        )
        self.k_proj = QLinear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
            args=config,
            layer_type="attn_k",
        )
        self.v_proj = QLinear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
            args=config,
            layer_type="attn_v",
        )
        self.o_proj = QLinear(
            self.num_heads * self.head_dim,
            self.hidden_size,
            bias=config.attention_bias,
            args=config,
            layer_type="attn_proj",
        )

        self.QAct_qkv_sum = QAct_FPout(config, layer_type="attn_qkv_sum")

        self.QAct_q_in = QAct_FPin(config, layer_type="attn_q_in")
        self.QAct_k_in = QAct_FPin(config, layer_type="attn_k_in")
        self.QAct_v_in = QAct_FPin(config, layer_type="attn_v_in")

        self.QAct_q_out = QAct_FPout(config, layer_type="attn_q_out")
        self.QAct_k_out = QAct_FPout(config, layer_type="attn_k_out")
        self.QAct_v_out = QAct_FPout(config, layer_type="attn_v_out")
        self.QAct_proj_in = QAct_FPin(config, layer_type="attn_proj_in")


class QMemLlamaFlashAttention2(QMemLlamaAttention):
    """
    Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    def forward(
        self,
        hidden_states: torch.Tensor,
        s: torch.Tensor,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if isinstance(past_key_value, StaticCache):
            raise ValueError(
                "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
                "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
            )

        output_attentions = False

        bsz, q_len, _ = hidden_states.size()

        hidden_states = self.QAct_qkv_sum(hidden_states, s)

        q, sq = self.QAct_q_in(hidden_states)
        k, sk = self.QAct_k_in(hidden_states)
        v, sv = self.QAct_v_in(hidden_states)

        query_states, sq = self.q_proj(q, sq)
        key_states, sk = self.k_proj(k, sk)
        value_states, sv = self.v_proj(v, sv)

        query_states = self.QAct_q_out(query_states, sq)
        key_states = self.QAct_k_out(key_states, sk)
        value_states = self.QAct_v_out(value_states, sv)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            logger.warning_once(
                "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
                "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
                "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
                "removed and `position_embeddings` will be mandatory."
            )
            cos, sin = self.rotary_emb(value_states, position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
        # to be able to avoid many of these transpose/reshape/view.
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        dropout_rate = self.attention_dropout if self.training else 0.0

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            position_ids=position_ids,
            dropout=dropout_rate,
            sliding_window=getattr(self, "sliding_window", None),
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
            is_causal=self.is_causal,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()

        attn_output = attn_output.to(torch.float32)
        attn_output, s = self.QAct_proj_in(attn_output)
        attn_output, s = self.o_proj(attn_output, s)

        if not output_attentions:
            attn_weights = None

        return attn_output, s, attn_weights, past_key_value


class QMemLlamaSdpaAttention(QMemLlamaAttention):
    """
    Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from LlamaAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        s: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )

        bsz, q_len, _ = hidden_states.size()

        hidden_states = self.QAct_qkv_sum(hidden_states, s)

        q, sq = self.QAct_q_in(hidden_states)
        k, sk = self.QAct_k_in(hidden_states)
        v, sv = self.QAct_v_in(hidden_states)

        query_states, sq = self.q_proj(q, sq)
        key_states, sk = self.k_proj(k, sk)
        value_states, sv = self.v_proj(v, sv)

        query_states = self.QAct_q_out(query_states, sq)
        key_states = self.QAct_k_out(key_states, sk)
        value_states = self.QAct_v_out(value_states, sv)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            logger.warning_once(
                "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
                "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
                "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
                "removed and `position_embeddings` will be mandatory."
            )
            cos, sin = self.rotary_emb(value_states, position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and causal_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        is_causal = True if causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)

        # attn_output = attn_output.to(torch.float32)
        attn_output, s = self.QAct_proj_in(attn_output)
        attn_output, s = self.o_proj(attn_output, s)

        return attn_output, s, None, past_key_value


QMemLLAMA_ATTENTION_CLASSES = {
    "eager": QMemLlamaAttention,
    "flash_attention_2": QMemLlamaFlashAttention2,
    "sdpa": QMemLlamaSdpaAttention,
}


class QMemLlamaDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: QMemLlamaConfig, layer_idx):
        super().__init__(config, layer_idx=layer_idx)
        self.hidden_size = config.hidden_size

        self.self_attn = QMemLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)

        self.mlp = QMemLlamaMLP(config, layer_idx)

        self.input_layernorm = QLlamaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_attn"
        )
        self.post_attention_layernorm = QLlamaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps, args=config, layer_type="ln_mlp"
        )

        self.QAdd_attn = QAdd(config, layer_type="add_attn")
        self.QAdd_mlp = QAdd(config, layer_type="add_mlp")

        self.QAct_reattnout_fx = QAct_FPin(config, layer_type="re_attn_out_fx")
        self.QAct_reattnout_re = QAct_FPin(config, layer_type="re_attn_out_re")

        self.QAct_remlpout_fx = QAct_FPin(config, layer_type="re_mlp_out_fx")
        self.QAct_remlpout_re = QAct_FPin(config, layer_type="re_mlp_out_re")

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence
            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """
        residual, res = self.QAct_reattnout_re(hidden_states)
        hidden_states, s = self.QAct_reattnout_fx(hidden_states)

        hidden_states, s = self.input_layernorm(hidden_states, s)

        # Self Attention
        hidden_states, s, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            s=s,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = self.QAdd_attn(residual, hidden_states, res, s)

        # Fully Connected
        residual, res = self.QAct_remlpout_re(hidden_states)
        hidden_states, s = self.QAct_remlpout_fx(hidden_states)

        hidden_states, s = self.post_attention_layernorm(hidden_states, s)
        hidden_states, s = self.mlp(hidden_states, s)
        hidden_states = self.QAdd_mlp(residual, hidden_states, res, s)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class QMemLlamaPreTrainedModel(LlamaPreTrainedModel):
    config_class = QMemLlamaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["QMemLlamaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear) or isinstance(module, QLinearTE):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class QMemLlamaModel(QMemLlamaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]

    Args:
        config: QMemLlamaConfig
    """

    def __init__(self, config: QMemLlamaConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [QMemLlamaDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = LlamaRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    _update_causal_mask = LlamaModel._update_causal_mask
    forward = LlamaModel.forward


class QMemLlamaForCausalLM(QMemLlamaPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = QMemLlamaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.forward_step_id = 0

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    forward = LlamaForCausalLM.forward
    prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation


class QMemLlamaForSequenceClassification(QMemLlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = QMemLlamaModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    forward = LlamaForSequenceClassification.forward


AutoConfig.register("qmemllama", QMemLlamaConfig)
AutoModel.register(QMemLlamaConfig, QMemLlamaModel)
AutoModelForCausalLM.register(QMemLlamaConfig, QMemLlamaForCausalLM)