Spaces:
Running
on
A100
Running
on
A100
File size: 16,804 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
import operator
from typing import Optional
import torch
import triton
import triton.language as tl
from .utils import compare_version, element_mul_kernel, is_hip
if compare_version("triton", operator.ge, "3.0.0"):
try:
# typical import path with dispatch available
from triton.language.extra.libdevice import tanh
except ModuleNotFoundError:
# for working with NGC containers
from triton.language.extra.cuda.libdevice import tanh
else:
from triton.language.math import tanh
_TRUE = tl.constexpr(1)
_FALSE = tl.constexpr(0)
@triton.jit
def liger_cross_entropy_kernel(
X_ptr,
X_stride,
Y_ptr,
Y_stride,
loss_ptr,
z_loss_ptr,
loss_stride,
n_cols,
n_non_ignore,
ignore_index,
lse_square_scale: tl.constexpr,
label_smoothing: tl.constexpr,
reduction: tl.constexpr, # set it as constexpr since reduction is always known at compile time
softcap,
RETURN_Z_LOSS: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
HAS_SOFTCAPPING: tl.constexpr,
):
"""
This kernel computes both cross entropy loss and the gradient of the input.
We only consider hard label + mean reduction for now. Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
Parameters:
X_ptr: Pointer to input tensor.
X_stride (int): The stride of the input tensor.
Y_ptr: Pointer to target tensor.
Y_stride (int): The stride of the target tensor.
loss_ptr: Pointer to tensor to store the loss.
z_loss_ptr: Pointer to tensor to store the z loss. No operation if RETURN_Z_LOSS is 0.
loss_stride (int): The stride of the loss tensor.
n_cols (int): The number of columns in the input tensor.
n_non_ignore (int): The number of non-ignored elements in the batch.
ignore_index (int): The index to ignore in the target.
label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing.
lse_square_scale (float): The scaler of (logsumexp(_input)) ^ 2 adding to the loss for the stability of training.
RETURN_Z_LOSS (int): The boolean value to decide whether storing z loss to z_loss_ptr or not. It must be 0 or 1.
reduction (str): The string for the reduction to apply
softcap (float): The upper threshold for scaling logits to the range (-softcap, +softcap).
BLOCK_SIZE (int): The block size for Triton operations.
HAS_SOFTCAPPING (bool): The boolean value to determine whether applying soft-capping or not.
"""
# https://github.com/triton-lang/triton/issues/1058
# If B*T*V is too large, program_id * stride will overflow out of int32, so we convert to int64
program_id = tl.program_id(0).to(tl.int64)
# 1. Load Y_ptr first because if the target is ignore_index, we can return right away
Y_ptr += program_id * Y_stride
y = tl.load(Y_ptr)
# 2. locate the start index
X_ptr += program_id * X_stride
if y == ignore_index:
# set all X_ptr as 0
for i in range(0, n_cols, BLOCK_SIZE):
X_offsets = i + tl.arange(0, BLOCK_SIZE)
tl.store(X_ptr + X_offsets, 0.0, mask=X_offsets < n_cols)
return
loss_ptr += program_id * loss_stride
z_loss_ptr += program_id * loss_stride
# Online softmax: 2 loads + 1 store (compared with 3 loads + 1 store for the safe softmax)
# Refer to Algorithm 3 in the paper: https://arxiv.org/pdf/1805.02867
# 3. [Online softmax] first pass: find max + sum
m = float("-inf") # m is the max value. use the notation from the paper
d = 0.0 # d is the sum. use the notation from the paper
ori_X_y = tl.load(X_ptr + y) # we need to store the original value of X_y for the loss calculation
if HAS_SOFTCAPPING:
ori_X_y = softcap * tanh(ori_X_y / softcap)
# Label smoothing is a general case of normal cross entropy
# See the full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issue-2503665310
scaled_x_sum = 0.0
eps = label_smoothing / n_cols
for i in range(0, n_cols, BLOCK_SIZE):
X_offsets = i + tl.arange(0, BLOCK_SIZE)
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols, other=float("-inf"))
if HAS_SOFTCAPPING:
X_block = softcap * tanh(X_block / softcap)
block_max = tl.max(X_block)
if label_smoothing > 0:
# scale X beforehand to avoid overflow
scaled_x_sum += tl.sum(tl.where(X_offsets < n_cols, -eps * X_block, 0.0))
m_new = tl.maximum(m, block_max)
d = d * tl.exp(m - m_new) + tl.sum(tl.exp(X_block - m_new))
m = m_new
# log (sum(e^(X_i))) = log (sum(e ^ (max(X) * e ^ (X_i - max(X)))))
# = log (e^(max(X)) * sum(e ^ (X_i - max(X))))
# = max(X) + log (sum(e ^ (X_i - max(X)))) = m + log d
lse = m + tl.log(d)
# 4. [Online Softmax] Second pass: compute gradients
# For 'mean' reduction, gradients are normalized by number of non-ignored elements (N)
# dx_y = (softmax(x_y) - 1) / N
# dx_i = softmax(x_i) / N, i != y
# For label smoothing:
# dx_i = (softmax(x_i) - label_smoothing / V) / N, V = n_cols, i != y
# dx_y = (softmax(x_y) - label_smoothing / V - (1 - label_smoothing)) / N
# = dx_i - (1 - label_smoothing) / N
# With Z loss:
# dx_i = ((1 + 2 * lse_square_scale * lse) * softmax(x_i) - label_smoothing / V) / N, i != y
# dx_y = dx_i - (1 - label_smoothing) / N
# For 'sum' reduction, no normalization is applied:
# dx_y = softmax(x_y) - 1
# dx_i = softmax(x_i), for i ≠ y
for i in range(0, n_cols, BLOCK_SIZE):
X_offsets = i + tl.arange(0, BLOCK_SIZE)
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols, other=float("-inf"))
if HAS_SOFTCAPPING:
intermediate = tanh(X_block / softcap)
X_block = softcap * intermediate
# softmax(x_i)
X_block = tl.exp(X_block - m) / d
# derivative of z-loss: 2 * lse_square_scale * lse * softmax(x_i)
X_block += 2 * lse_square_scale * lse * X_block
# smoothing term
X_block += -eps
# special handle dx_y
X_block = tl.where(X_offsets != y, X_block, X_block - (1 - label_smoothing))
# reduction scale
if reduction == "mean":
X_block = X_block / (n_non_ignore)
# chain rule
# d(softcap * tanh(x / softcap)) = (1 - tanh^2(x / softcap))
if HAS_SOFTCAPPING:
X_block = X_block * (1 - intermediate * intermediate)
tl.store(X_ptr + X_offsets, X_block, mask=X_offsets < n_cols)
# We need tl.debug_barrier() to ensure the new result of X_ptr is written as mentioned in
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
tl.debug_barrier()
# 5. Calculate the loss
# loss = log (softmax(X_y)) = log ((e ^ (X_y - max(X)) / sum(e ^ (X - max(X))))
# = (X_y - max(X)) - log(sum(e ^ (X - max(X))))
# = X_y - m - log d = X_y - lse
# sum(e ^ (X - max(X))) must >= 1 because the max term is e ^ 0 = 1
# So we can safely calculate log (softmax(X_y)) without overflow
loss = lse - ori_X_y
# Original loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
# H(q', p) = (1 - label_smoothing) * H(q, p) + label_smoothing * H(u, p)
# = (1 - label_smoothing) * H(q, p) + eps * sum(logsoftmax(x_i))
# By using m (global max of xi) and d (sum of e^(xi-m)), we can simplify as:
# = (1 - label_smoothing) * H(q, p) + (sum(-eps * x_i) + label_smoothing * (m + logd))
# Refer to H(q', p) in section 7 of the paper: https://arxiv.org/pdf/1512.00567
# pytorch: https://github.com/pytorch/pytorch/blob/2981534f54d49fa3a9755c9b0855e7929c2527f0/aten/src/ATen/native/LossNLL.cpp#L516
# See full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issuecomment-2333753087
if label_smoothing > 0:
smooth_loss = scaled_x_sum + label_smoothing * lse
loss = loss * (1 - label_smoothing) + smooth_loss
# An auxiliary loss, z_loss
# Refer to Page14 Loss function section in the paper PaLM: https://www.jmlr.org/papers/v24/22-1144.html
z_loss = lse_square_scale * lse * lse
loss += z_loss
# Normalize the loss by the number of non-ignored elements if reduction is "mean"
if reduction == "mean":
z_loss = z_loss / n_non_ignore
loss = loss / n_non_ignore
tl.store(loss_ptr, loss)
if RETURN_Z_LOSS == _TRUE:
tl.store(z_loss_ptr, z_loss)
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
MAX_FUSED_SIZE = 65536 // 2 # the best size we found by manually tuning
_bool_to_return_z_loss = {
True: _TRUE.value,
False: _FALSE.value,
}
def cross_entropy_forward(
_input,
target,
ignore_index,
lse_square_scale,
label_smoothing,
reduction,
softcap,
return_z_loss,
):
if not isinstance(return_z_loss, int):
assert return_z_loss in _bool_to_return_z_loss, f"return_z_loss must be True or False. Got: {return_z_loss}"
return_z_loss = _bool_to_return_z_loss[return_z_loss]
else:
assert return_z_loss in _bool_to_return_z_loss, f"return_z_loss must be True or False. Got: {return_z_loss}"
BT, V = _input.shape
n_rows = BT
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
# unreduced loss
loss_1d = torch.zeros(n_rows, dtype=_input.dtype, device=_input.device)
if return_z_loss == _TRUE.value:
z_loss_1d = torch.zeros(n_rows, dtype=_input.dtype, device=_input.device)
else:
z_loss_1d = loss_1d # dummy ptr when return_z_loss == False
n_non_ignore = (target != ignore_index).sum().item()
# ensure _input and target are contiguous in the last dimension
if _input.stride(-1) != 1:
_input = _input.contiguous()
if target.stride(-1) != 1:
target = target.contiguous()
# Here we use a trick to store X_ptr gradient in X_ptr so we can save memory
liger_cross_entropy_kernel[(n_rows,)](
X_ptr=_input,
X_stride=_input.stride(-2),
Y_ptr=target,
Y_stride=target.stride(-1), # always 1
loss_ptr=loss_1d,
z_loss_ptr=z_loss_1d,
loss_stride=loss_1d.stride(-1), # always 1
n_cols=V,
n_non_ignore=n_non_ignore,
ignore_index=ignore_index,
lse_square_scale=lse_square_scale,
label_smoothing=label_smoothing,
reduction=reduction,
softcap=softcap if softcap is not None else 0.0,
RETURN_Z_LOSS=return_z_loss,
BLOCK_SIZE=BLOCK_SIZE,
HAS_SOFTCAPPING=True if softcap is not None else False,
# TODO: 32 seems to give the best performance
# Performance is quite sensitive to num_warps
num_warps=32 if not is_hip() else 16,
)
loss = torch.sum(loss_1d)
if return_z_loss == _TRUE.value:
z_loss = torch.sum(z_loss_1d)
else:
z_loss = None
return loss, z_loss, _input
def cross_entropy_backward(_input, grad_output):
# If cross entropy is the last layer, grad_output is 1.0. Skip the mul to save time
if torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
pass
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
else:
BT, V = _input.shape
n_rows = BT
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
element_mul_kernel[(n_rows,)](
_input,
_input.stride(-2),
grad_output,
V,
BLOCK_SIZE=BLOCK_SIZE,
num_warps=32 if not is_hip() else 16,
)
return _input
class LigerCrossEntropyFunction(torch.autograd.Function):
"""
This class implements a custom autograd function for the Liger Cross Entropy loss.
It overrides the forward and backward methods of the torch.autograd.Function class.
"""
@staticmethod
def forward(
ctx,
_input: torch.Tensor,
target: torch.Tensor,
ignore_index: int = -100,
lse_square_scale: float = 0.0,
label_smoothing: float = 0.0,
reduction: str = "mean",
softcap: Optional[float] = None,
return_z_loss: bool = False,
):
"""
The forward pass of the Liger Cross Entropy loss.
Parameters:
ctx : The context object.
_input (tensor): The input tensor of shape (BT, V) where B is batch size, T is sequence length, V is vocab size.
target (tensor): The target tensor of shape (BT) where each value is in [0, V-1].
ignore_index (int): The index to ignore in the target.
lse_square_scale (float): The scaler of (logsumexp(_input)) ^ 2 adding to the loss for the stability of training.
label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing.
reduction (str): The reduction to apply to the output: "none" | "mean | "sum".
softcap (Optional[float]): The upper threshold for scaling logits to the range (-softcap, +softcap).
return_z_loss (bool): When `return_z_loss` is `True`, returns (loss, z_loss) instead of (loss, None). Default: `False`
Returns:
tuple: A tuple with the compouted losses with respect to loss and z loss. The elements are tensors or None.
"""
loss, z_loss, _input = cross_entropy_forward(
_input,
target,
ignore_index,
lse_square_scale,
label_smoothing,
reduction,
softcap,
return_z_loss,
)
# TODO: investigation
# If we don't detach the _input tensor, the memory will double
# Not sure why but seems that there will be a time both grad and value exist but in different location
ctx.save_for_backward(_input.detach())
ctx.return_z_loss = return_z_loss
return loss, z_loss
@staticmethod
def backward(ctx, grad_output, grad_ouput2):
"""
The backward pass of the Liger Cross Entropy loss.
Parameters:
ctx : The context object with saved tensors.
grad_output (tensor): The tensor containing the gradient of the loss with respect to the output.
grad_output2 (tenosr): No use.
Returns:
tuple: A tuple with the gradients with respect to the inputs. The elements are tensors or None.
"""
if ctx.return_z_loss:
del grad_ouput2 # z_loss is only for logging
(_input,) = ctx.saved_tensors
_input = cross_entropy_backward(_input, grad_output)
return (
_input,
None,
None,
None,
None,
None,
None,
None,
)
def liger_fixed_cross_entropy(source, target, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs):
reduction = "sum" if num_items_in_batch is not None else "mean"
# loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction)
loss, _ = LigerCrossEntropyFunction.apply(source, target, ignore_index, 0.0, 0.0, reduction)
if reduction == "sum":
loss = loss / num_items_in_batch
return loss
def LigerForCausalLMLoss(
logits, labels, vocab_size: int, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs
):
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = liger_fixed_cross_entropy(shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs)
return loss
|