File size: 3,981 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

"""
This file incorporates code from Unsloth licensed under the Apache License, Version 2.0.
See the original Unsloth repository at https://github.com/unslothai/unsloth.

The following line
https://github.com/linkedin/Liger-Kernel/blob/7382a8761f9af679482b968f9348013d933947c7/src/liger_kernel/ops/utils.py#L23
is based on code from Unsloth, located at:
https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43

Modifications made by Yanning Chen, 2024.
"""

import functools
import importlib
import operator
from typing import Callable

import torch
import triton
import triton.language as tl
from packaging.version import Version


def is_hip() -> bool:
    return torch.version.hip is not None


def ensure_contiguous(fn):
    @functools.wraps(fn)
    def wrapper(ctx, *args, **kwargs):
        def maybe_to_contiguous(x):
            return x.contiguous() if isinstance(x, torch.Tensor) else x

        args = [maybe_to_contiguous(arg) for arg in args]
        kwargs = {k: maybe_to_contiguous(v) for k, v in kwargs.items()}
        return fn(ctx, *args, **kwargs)

    return wrapper


def calculate_settings(n):
    # reference: https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43

    MAX_FUSED_SIZE = 65536
    BLOCK_SIZE = triton.next_power_of_2(n)
    if BLOCK_SIZE > MAX_FUSED_SIZE:
        raise RuntimeError(
            f"Cannot launch Triton kernel since n = {n} exceeds "
            f"the recommended Triton blocksize = {MAX_FUSED_SIZE}."
        )

    num_warps = 4
    if BLOCK_SIZE >= 32768:
        num_warps = 32 if not is_hip() else 16
    elif BLOCK_SIZE >= 8192:
        num_warps = 16
    elif BLOCK_SIZE >= 2048:
        num_warps = 8
    return BLOCK_SIZE, num_warps


def compare_version(package: str, operator: Callable, target: str):
    try:
        pkg = importlib.import_module(package)
    except ImportError:
        return False
    pkg_version = Version(pkg.__version__)
    return operator(pkg_version, Version(target))


def get_amp_custom_fwd_bwd() -> Callable:
    if compare_version("torch", operator.ge, "2.4.0"):
        return (
            functools.partial(torch.amp.custom_fwd, device_type="cuda"),
            functools.partial(torch.amp.custom_bwd, device_type="cuda"),
        )
    return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd


amp_custom_fwd, amp_custom_bwd = get_amp_custom_fwd_bwd()


torch_to_triton_dtype = {
    torch.float32: tl.float32,
    torch.float16: tl.float16,
    torch.bfloat16: tl.bfloat16,
}


@triton.jit
def element_mul_kernel(
    X_ptr,
    X_stride,
    grad_output_ptr,
    n_cols,
    BLOCK_SIZE: tl.constexpr,
):
    """
    This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
    The multiplication is performed in-place on the tensor pointed by X_ptr.

    Parameters:
    X_ptr: Pointer to the input tensor.
    X_stride (int): The stride of the input tensor.
    grad_output_ptr: Pointer to the gradient output value.
    n_cols (int): The number of columns in the input tensor.
    BLOCK_SIZE (int): The block size for Triton operations.
    """

    # Get the program ID and convert it to int64 to avoid overflow
    program_id = tl.program_id(0).to(tl.int64)

    # Locate the start index
    X_ptr += program_id * X_stride

    # Load the gradient output value
    grad_output = tl.load(grad_output_ptr)

    # Perform the element-wise multiplication
    for i in range(0, n_cols, BLOCK_SIZE):
        X_offsets = i + tl.arange(0, BLOCK_SIZE)
        X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
        tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)