File size: 43,130 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import copy
import json
import logging
import os
import os.path as osp
import warnings
from abc import ABC
from collections import OrderedDict, defaultdict, deque
from itertools import chain
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from hydra.utils import instantiate
from transformers import AutoConfig, GenerationConfig, LogitsProcessor, PreTrainedModel
from transformers.modeling_utils import ContextManagers, no_init_weights

from llava.constants import DEFAULT_SOUND_TOKEN,DEFAULT_SPEECH_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
from llava.mm_utils import process_image, process_images, process_sounds,process_sound_masks
from llava.model.configuration_llava import LlavaConfig, ResponseFormat
from llava.model.language_model.builder import build_llm_and_tokenizer
from llava.model.multimodal_encoder.builder import build_sound_tower
from llava.model.multimodal_projector.builder import build_speech_mm_projector, build_sound_mm_projector
from llava.model.utils import get_model_config
from llava.train.sequence_parallel import get_pg_manager
from llava.utils import distributed
from llava.utils.media import extract_media
from llava.utils.tokenizer import tokenize_conversation


class LlavaMetaModel(ABC):
    def _init_llm(self, llm_cfg, config, *args, **kwargs):
        llm, tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
        return llm, tokenizer

    def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
        # TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
        if hasattr(self, "llm") or hasattr(self, "vision_tower") or hasattr(self, "speech_tower") or hasattr(self, "sound_tower") or hasattr(self, "mm_projector") or hasattr(self, "speech_mm_projector") or hasattr(self, "sound_mm_projector"):
            # already initialized, skipped
            return

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype

        cfgs = get_model_config(config)
        print(cfgs)
        if len(cfgs) == 7:
            llm_cfg, vision_tower_cfg, speech_tower_cfg,sound_tower_cfg, mm_projector_cfg, speech_mm_projector_cfg,sound_mm_projector_cfg = cfgs
        else:
            raise ValueError("`llm_cfg` `mm_projector_cfg` `speech_mm_projector_cfg` `sound_mm_projector_cfg` `vision_tower_cfg` `speech_tower_cfg` `sound_tower_cfg` not found in the config.")

        self.llm, self.tokenizer = self._init_llm(llm_cfg, config, *args, **kwargs)
        
        self.sound_tower = build_sound_tower(sound_tower_cfg, config)
        self.sound_mm_projector = build_sound_mm_projector(sound_mm_projector_cfg, config)
        
        if isinstance(self.config, dict):
            self.vocab_size = config.llm_cfg["vocab_size"] + NUM_EXTRA_TOKENS
        else:
            self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
            logging.info(
                f"[XGrammar] config is not a dict, loading vocab size from tokenizer {self.tokenizer.vocab_size} + {NUM_EXTRA_TOKENS} => {self.vocab_size}"
            )

        # XGrammar tokenizer and grammar compiler
        # lazy init only when specified json output during inference
        self.grammar_compiler = None

        self.encoders = {}
        for name in ["sound"]:
            config = getattr(self.config, f"{name}_encoder")
            if isinstance(config, str):
                config = json.loads(config)
            self.encoders[name] = instantiate(config, parent=self)

        self.post_config()
        self.is_loaded = True

        assert (
            self.llm is not None or self.vision_tower is not None or self.speech_tower is not None or self.mm_projector is not None or self.speech_mm_projector is not None
        ), "At least one of the components must be instantiated."

    @classmethod
    def load_from_config(cls, model_path_or_config, *args, **kwargs):
        pass

    ## FIXME we will use this function to load model in the future
    @classmethod
    def load_pretrained(cls, model_path_or_config, *args, **kwargs):
        kwargs.pop("config", None)

        if isinstance(model_path_or_config, str):
            config = AutoConfig.from_pretrained(model_path_or_config)
        elif isinstance(model_path_or_config, LlavaConfig):
            config = model_path_or_config
        else:
            raise NotImplementedError(
                f"wrong type, {type(model_path_or_config)} \
                                      {isinstance(model_path_or_config, LlavaConfig)}"
            )

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype

        cfgs = get_model_config(config)
        if len(cfgs) == 7:
            llm_cfg, vision_tower_cfg, speech_tower_cfg,sound_tower_cfg, mm_projector_cfg, speech_mm_projector_cfg,sound_mm_projector_cfg = cfgs
        else:
            raise ValueError("`llm_cfg` `mm_projector_cfg` `speech_mm_projector_cfg` `sound_mm_projector_cfg` `vision_tower_cfg` `speech_tower_cfg` `sound_tower_cfg` not found in the config.")

        init_context = [
            no_init_weights(_enable=True),
        ]

        with ContextManagers(init_context):
            vlm = cls(config, *args, **kwargs)

        if hasattr(vlm, "llm") or hasattr(vlm, "vision_tower") or hasattr(vlm, "speech_tower") or hasattr(vlm, "sound_tower") or hasattr(vlm, "mm_projector") or hasattr(vlm, "speech_mm_projector") or hasattr(vlm, "sound_mm_projector"):
            if vlm.is_loaded:
                return vlm

        vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
        vlm.sound_tower = build_sound_tower(sound_tower_cfg, config)
        vlm.sound_mm_projector = build_sound_mm_projector(sound_mm_projector_cfg, config)

        self.post_config()
        self.is_loaded = True

        # FIXME(ligeng, yunhao): llm should never be none here.
        assert (
            vlm.llm is not None or vlm.vision_tower is not None or vlm.speech_tower is not None or vlm.mm_projector is not None or vlm.speech_mm_projector is not None
        ), "At least one of the components must be instantiated."
        return vlm

    ## FIXME we will use this function to save the model in the future
    def save_pretrained(self, output_dir, state_dict=None):
        if state_dict is None:
            # other wise fetch from deepspeed
            # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
            state_dict = self.state_dict()

        if getattr(self, "tokenizer", None):
            self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))

        if self.get_llm():
            print(f"saving llm to {osp.join(output_dir, 'llm')}")
            self.llm.config._name_or_path = osp.join(output_dir, "llm")
            llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
            self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
            self.config.llm_cfg = self.llm.config

        
        if self.get_sound_tower():
            print(f"saving sound_tower to {osp.join(output_dir, 'sound_tower')}")
            self.sound_tower.config._name_or_path = osp.join(output_dir, "sound_tower")
            sound_tower_state_dict = OrderedDict(
                {k.split("sound_tower.sound_tower.")[-1]: v for k, v in state_dict.items() if "sound_tower" in k}
            )
            self.sound_tower.sound_tower.save_pretrained(
                os.path.join(output_dir, "sound_tower"),
                state_dict=sound_tower_state_dict,
            )
            self.config.sound_tower_cfg = self.sound_tower.config
        
        if self.get_sound_mm_projector():
            print(f"saving sound_mm_projector to {osp.join(output_dir, 'sound_mm_projector')}")
            self.sound_mm_projector.config._name_or_path = osp.join(output_dir, "sound_mm_projector")
            sound_mm_projector_state_dict = OrderedDict(
                {k.split("sound_mm_projector.")[-1]: v for k, v in state_dict.items() if "sound_mm_projector" in k}
            )
            self.sound_mm_projector.save_pretrained(
                os.path.join(output_dir, "sound_mm_projector"),
                state_dict=sound_mm_projector_state_dict,
            )
            self.config.sound_mm_projector_cfg = self.sound_mm_projector.config

        ## update and save top-level config
        self.config._name_or_path = output_dir
        self.config.architectures = [self.__class__.__name__]
        self.config.save_pretrained(output_dir)

    def get_llm(self):
        llm = getattr(self, "llm", None)
        if type(llm) is list:
            llm = llm[0]
        return llm

    def get_lm_head(self):
        lm_head = getattr(self.get_llm(), "lm_head", None)
        return lm_head
    
    def get_sound_tower(self):
        sound_tower = getattr(self, "sound_tower", None)
        if type(sound_tower) is list:
            sound_tower = sound_tower[0]
        return sound_tower


    def get_sound_mm_projector(self):
        sound_mm_projector = getattr(self, "sound_mm_projector", None)
        if type(sound_mm_projector) is list:
            sound_mm_projector = sound_mm_projector[0]
        return sound_mm_projector

    def post_config(self):
        self.training = self.get_llm().training
        ## configuration
        if getattr(self.config, "llm_cfg", None) is None:
            self.config.llm_cfg = self.llm.config
            self.config.speech_tower_cfg = self.speech_tower.config
        if getattr(self.config, "sound_tower_cfg", None) is None:
            self.config.sound_tower_cfg = self.sound_tower.config
        if getattr(self.config, "sound_mm_projector_cfg", None) is None:
            self.config.sound_mm_projector_cfg = self.sound_mm_projector.config

    def freezed_module_patch(self):
        """
        Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
        """
        if self.training:
            if self.get_llm() and not getattr(self.config, "tune_language_model", False):
                pass

            if self.get_sound_tower() and not getattr(self.config, "tune_sound_tower", False):
                self.get_sound_tower().eval()
            if self.get_sound_mm_projector() and not getattr(self.config, "tune_sound_mm_projector", False):
                self.get_sound_mm_projector().eval()

    
    def encode_sound(self, sounds, masks=None):
   
        sound_features = self.get_sound_tower()(sounds, masks)
        sound_features = self.get_sound_mm_projector()(sound_features)
        return sound_features

    ## @yunhao: is there a better way to handle function call and attributes for llm?
    ## support beam search
    def _temporary_reorder_cache(self, past_key_values, sorted_idx):
        return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)

    def get_input_embeddings(self):
        return self.get_llm().get_input_embeddings()

    def get_output_embeddings(self):
        return self.get_llm().get_output_embeddings()

    def resize_token_embeddings(self, embed_size):
        self.get_llm().resize_token_embeddings(embed_size)


class LlavaMetaForCausalLM(ABC):
    def _embed(
        self,
        input_ids: torch.Tensor,
        media: Dict[str, List[torch.Tensor]],
        media_config: Dict[str, Dict[str, Any]],
        labels: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        media_meta: Dict[str, Dict[str, Any]]= None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
        attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)

        PROCESS_GROUP_MANAGER = get_pg_manager()
        if PROCESS_GROUP_MANAGER is not None:
            for name in media:
                self.encoders[name].end_tokens = None

        # Extract text and media embeddings
        text_embeds = self.llm.model.embed_tokens(input_ids)
        media_embeds = self.__embed_media_tokens(media, media_config, media_meta)
        # This is a workaround to make sure the dummy embeddings are consumed
        while media_embeds.get("dummy"):
            dummy_embed = media_embeds["dummy"].popleft()
            text_embeds += torch.sum(dummy_embed) * 0
        # Remove padding
        batch_size = labels.shape[0]

        # Build inverse mapping from token ID to media name
        media_tokens = {}
        for name, token_id in self.tokenizer.media_token_ids.items():
            media_tokens[token_id] = name

        # -------------------------------- #
        num_audio_tokens = torch.stack(media_meta["sound_embed_masks"], dim=0).sum(-1)
        num_audio_tokens = torch.tensor([round(int(x) / 10) * 10 for x in num_audio_tokens])            
        num_audios = len(media_embeds['sound']) # length of queue is the number of audios we have in total
        max_audio_tokens, embed_dim = media_embeds['sound'][0].shape
       

        audio_features_mask = torch.arange(max_audio_tokens).expand(num_audios, max_audio_tokens).to(
            num_audio_tokens.device
        ) < num_audio_tokens.unsqueeze(1)

        audio_embeds = []
        while media_embeds['sound']:       
            audio_embeds.append(media_embeds['sound'].popleft())
        audio_embeds = torch.stack(audio_embeds,dim=0)
        
        masked_audio_features = audio_embeds[audio_features_mask].view(-1, embed_dim)
        batch_size, sequence_length = input_ids.shape
        _left_padding = torch.any(attention_mask[:, 0] == 0)
        _right_padding = torch.any(attention_mask[:, -1] == 0)

        left_padding = True
        if batch_size > 1:
            if _left_padding and not _right_padding:
                left_padding = True
            elif not _left_padding and _right_padding:
                left_padding = False
            elif not _left_padding and not _right_padding:
                # both side is 1, so cannot tell
                left_padding = self.tokenizer.padding_side == "left"
            else:
                # invalid attention_mask
                raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")

        # 1. Create a mask to know where special audio tokens are
        special_audio_token_mask = input_ids == self.tokenizer.media_token_ids['sound'] #hard coded to just work with 'sound'
        num_special_audio_tokens = torch.sum(special_audio_token_mask, dim=-1)

        # In case the Audio model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = text_embeds.device
        attention_mask = attention_mask.to(target_device)
        input_ids = input_ids.to(target_device)
        num_audio_tokens = num_audio_tokens.to(target_device)
        batch_indices, non_audio_indices = torch.where(
            (input_ids != self.tokenizer.media_token_ids['sound']) & (attention_mask == 1)
        )

        # 2. Compute the positions where text should be written
        # Calculate new positions for text tokens in merged audio-text sequence.
        # `special_audio_token_mask` identifies audio tokens. Each audio token will be replaced by `audio_feat_lengths - 1` text tokens.
        # `torch.cumsum` computes how each audio token shifts subsequent text token positions.
        token_placeholder_num = torch.zeros_like(input_ids)
        token_placeholder_num[special_audio_token_mask] = num_audio_tokens.long() - 1
        token_placeholder_num = token_placeholder_num + 1
        new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1
        max_token_num = token_placeholder_num.sum(-1).max()
        nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1]
        if left_padding:
            new_token_positions += nb_audio_pad[:, None]  # offset for left padding
        text_to_overwrite = new_token_positions[batch_indices, non_audio_indices]
        batch_indices, non_audio_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_audio_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size, max_token_num, embed_dim, dtype=text_embeds.dtype, device=text_embeds.device
        )
        final_attention_mask = torch.zeros(
            batch_size, max_token_num, dtype=attention_mask.dtype, device=text_embeds.device
        )
        final_input_ids = torch.full(
            (batch_size, max_token_num), self.tokenizer.pad_token_id, dtype=input_ids.dtype, device=text_embeds.device
        )

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<audio>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the audio features
        final_embedding[batch_indices, text_to_overwrite] = text_embeds[batch_indices, non_audio_indices]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices]
        final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_audio_indices]
        final_labels = None
        if labels is not None:
            labels = labels.to(target_device)
            final_labels = torch.full_like(final_attention_mask, IGNORE_INDEX, dtype=torch.long) #.to(torch.long)
            final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_audio_indices]

        # 5. Fill the embeddings corresponding to the audios. Anything that is still zeros needs filling
        audio_to_overwrite = torch.full(
            (batch_size, max_token_num), True, dtype=torch.bool, device=text_embeds.device
        )
        audio_to_overwrite[batch_indices, text_to_overwrite] = False
        seq_indices = torch.arange(max_token_num).unsqueeze(0).to(target_device)
        seq_indices = seq_indices.expand(batch_size, max_token_num)

        if left_padding:
            # exclude padding on the left
            max_token_num = max_token_num.to(target_device)
            val = (max_token_num - seq_indices) <= (
                token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1)
            )[:, None]
        else:
            # exclude padding on the right
            val = seq_indices < (token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1))[:, None]

        audio_to_overwrite &= val

        if audio_to_overwrite.sum() != num_audio_tokens.sum():
            raise ValueError(
                f"The input provided to the model are wrong. The number of audio tokens is {num_special_audio_tokens} while"
                f" the number of audio given to the model is {num_audios}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[audio_to_overwrite] = (
            masked_audio_features.contiguous().reshape(-1, embed_dim).to(target_device)
        )
        final_attention_mask |= audio_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
        # # Truncate sequences to `model_max_length` as media embeddings are inserted
        inputs, labels = self.__truncate_sequence(final_embedding, final_labels)
        return self.__batchify_sequence(inputs, labels)
      

    def __embed_media_tokens(
        self,
        media: Dict[str, List[torch.Tensor]],
        media_config: Dict[str, Dict[str, Any]],
        media_meta: Dict[str, Dict[str, Any]]= None,
    ) -> Dict[str, List[torch.Tensor]]:
        embeds = defaultdict(deque)
        for name in media:
            if self.training:
                # Gather metainfo of media objects from all ranks
                info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
                infos = list(chain(*distributed.all_gather(info)))

                # The entire batch does not contain any media objects of this type.
                if not infos:
                    continue

                # Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
                if media.get(name) is None or len(media[name]) == 0:
                    dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
                    embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
                    continue
            embeds[name] = deque(self.encoders[name](media[name], media_config[name], media_meta['sound_feature_masks'])) # hard coded
        return embeds

    def __truncate_sequence(
        self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
            warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
            inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
            labels = [label[: self.tokenizer.model_max_length] for label in labels]
        return inputs, labels

    def __batchify_sequence(
        self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        batch_size = len(inputs)
        device = inputs[0].device
        hidden_size = inputs[0].shape[1]
        max_length = max(inputs[k].shape[0] for k in range(batch_size))
        attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)

        inputs_p, labels_p = [], []
        for k in range(batch_size):
            size_pk = max_length - inputs[k].shape[0]
            inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
            labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
            if self.tokenizer.padding_side == "right":
                attention_mask[k, inputs[k].shape[0] :] = False
                inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
                labels_pk = torch.cat([labels[k], labels_pk], dim=0)
            else:
                attention_mask[k, : -inputs[k].shape[0]] = False
                inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
                labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
            inputs_p.append(inputs_pk)
            labels_p.append(labels_pk)

        inputs = torch.stack(inputs_p, dim=0)
        labels = torch.stack(labels_p, dim=0)
        return inputs, labels, attention_mask

    def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
        # Handle sequence parallelism
        PROCESS_GROUP_MANAGER = get_pg_manager()

        # We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
        if PROCESS_GROUP_MANAGER is not None:
            sp_degree = PROCESS_GROUP_MANAGER.sp_degree
            sp_rank = PROCESS_GROUP_MANAGER.sp_rank
            sp_group = PROCESS_GROUP_MANAGER.sp_pg
            ring_degree = PROCESS_GROUP_MANAGER.ring_degree
            ring_rank = PROCESS_GROUP_MANAGER.ring_rank
            ring_type = PROCESS_GROUP_MANAGER.ring_type
            ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
            ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank

            bs, shard_seqlen = position_ids.shape
            sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
            dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
            sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)

            if sp_rank == 0:
                original_start_id = 0
            else:
                original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
            original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()

            # Gather attention_mask, position_ids, labels and input_embeds
            all_inputs_embeds = torch.zeros(
                bs,
                torch.sum(sp_seq_len_cat),
                inputs_embeds.shape[-1],
                dtype=inputs_embeds.dtype,
                device=inputs_embeds.device,
            ).contiguous()
            all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
            dist.barrier(group=sp_group)
            dist.all_reduce(all_inputs_embeds, group=sp_group)
            dist.barrier(group=sp_group)

            attention_mask_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
                for i in range(sp_degree)
            ]
            position_ids_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
                for i in range(sp_degree)
            ]
            labels_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
            ]

            dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
            dist.all_gather(position_ids_list, position_ids, group=sp_group)
            dist.all_gather(labels_list, labels, group=sp_group)

            effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
            effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
            effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)

            global_attention_mask_list = []
            global_position_ids_list = []
            global_labels_list = []
            global_inputs_embeds_list = []
            for i in range(bs):
                global_attention_mask_batch_list = []
                global_position_ids_batch_list = []
                global_labels_batch_list = []
                global_inputs_embeds_batch_list = []
                for j in range(sp_degree):
                    eff_len = effective_seqlen_batch_list[i][j]
                    prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0

                    global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
                    global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
                    global_labels_batch_list.append(labels_list[j][i, :eff_len])
                    global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
                global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
                global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
                global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
                global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))

                global_attention_mask = torch.nn.utils.rnn.pad_sequence(
                    global_attention_mask_list, batch_first=True, padding_value=False
                )
                global_position_ids = torch.nn.utils.rnn.pad_sequence(
                    global_position_ids_list, batch_first=True, padding_value=-1
                )
                global_labels = torch.nn.utils.rnn.pad_sequence(
                    global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
                )
                global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
                    global_inputs_embeds_list, batch_first=True, padding_value=0
                )

            # Re-shard the inputs
            if ring_degree > 1:
                total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
                new_seqlen_per_rank = total_effective_seqlen // sp_degree
                assert torch.all(
                    total_effective_seqlen % sp_degree == 0
                ), "total_effective_seqlen must be divisible by sp_degree"

                max_new_seqlen = torch.max(new_seqlen_per_rank).item()

                new_attention_mask = torch.zeros(
                    (bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
                )
                new_position_ids = torch.zeros(
                    (bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
                )
                new_labels = torch.full(
                    (bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
                )
                new_inputs_embeds = torch.zeros(
                    (bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
                    dtype=global_inputs_embeds.dtype,
                    device=global_inputs_embeds.device,
                )

                if ring_type == "ring_varlen":
                    for i in range(bs):
                        start_idx = new_seqlen_per_rank[i] * sp_rank
                        end_idx = start_idx + new_seqlen_per_rank[i]
                        new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
                        new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
                        new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
                        new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
                            i, start_idx:end_idx, :
                        ]
                elif ring_type == "zigzag_ring_varlen":
                    chunk_size = total_effective_seqlen // (2 * sp_degree)
                    for i in range(bs):
                        # Zigzag pattern indices
                        if sp_degree == ring_degree:
                            forward_rank_idx = sp_rank
                            backward_rank_idx = 2 * sp_degree - sp_rank - 1
                        else:
                            ulysses_offset = ulysses_rank * ring_degree * 2
                            forward_rank_idx = ring_rank + ulysses_offset
                            backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset

                        # Calculate start and end indices for the forward and backward zigzag
                        start_idx_fwd = forward_rank_idx * chunk_size[i]
                        end_idx_fwd = start_idx_fwd + chunk_size[i]

                        start_idx_bwd = backward_rank_idx * chunk_size[i]
                        end_idx_bwd = start_idx_bwd + chunk_size[i]

                        # Fill new tensors with zigzag data
                        new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
                        new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
                            i, start_idx_bwd:end_idx_bwd
                        ]

                        new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
                        new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
                            i, start_idx_bwd:end_idx_bwd
                        ]

                        new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
                        new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]

                        new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
                        new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
                            i, start_idx_bwd:end_idx_bwd, :
                        ]
                else:
                    raise ValueError(f"Invalid ring_type: {ring_type}")
            else:
                global_seq_len = global_attention_mask.shape[-1]
                seq_len_sharded = global_seq_len // sp_degree
                start_idx_reshard = seq_len_sharded * sp_rank
                end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len

                new_attention_mask = torch.narrow(
                    global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )
                new_position_ids = torch.narrow(
                    global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )
                new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
                new_inputs_embeds = torch.narrow(
                    global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )

            return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels

        device = inputs_embeds.device
        batch_size = inputs_embeds.shape[0]
        seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]

        # Pack all sequences together
        inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
        attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
        position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
        labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]

        # Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
        inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
        attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
        position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
        labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))

        # Mask the first token of each sequence to avoid contamination
        for label in labels_p:
            label[0] = IGNORE_INDEX

        # Batch the data
        inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
        attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
        position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
        labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)

        if hasattr(
            self, "pad_to_multiple_of"
        ):  # related to quantization, please refer to ModelArguments for more information.
            assert len(labels_p.shape) == 2
            batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
            hidden_size = inputs_embeds_p.shape[-1]

            if max_length % self.pad_to_multiple_of != 0:
                max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
                difference = max_length - cur_length

                inputs_embeds_p = torch.cat(
                    (
                        inputs_embeds_p,
                        torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
                    ),
                    dim=1,
                )
                labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
                attention_mask_p = torch.cat(
                    (
                        attention_mask_p,
                        torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
                    ),
                    dim=1,
                )
                position_ids_p = torch.cat(
                    (position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
                )

        return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p

    def get_xgr_logits_processor(self, response_format: ResponseFormat) -> List[LogitsProcessor]:
        # Convert response format to logits processor
        import xgrammar as xgr

        logging.info("[XGrammar] Compiling grammar for contrained output")

        if self.grammar_compiler is None:
            # logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
            self.grammar_compiler = xgr.GrammarCompiler(
                xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
            )

        if response_format.type == "json_schema":
            compiled_grammar = self.grammar_compiler.compile_json_schema(
                response_format.json_schema.schema_,
                indent=2,
            )
        else:
            compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()

        return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]

    @torch.inference_mode()
    def generate(
        self,
        input_ids: Optional[torch.FloatTensor] = None,
        media: Optional[Dict[str, List[torch.Tensor]]] = None,
        media_config: Dict[str, Dict[str, Any]] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        media_meta: Dict[str, Dict[str, Any]]= None,
        **generation_kwargs,
    ):
        inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask, media_meta)
        return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)

    @torch.inference_mode()
    def generate_content(
        self,
        prompt: Union[str, List],
        generation_config: Optional[GenerationConfig] = None,
        response_format: Optional[ResponseFormat] = None,
    ) -> str:
        # TODO(zhijianl): Support directly taking conversation as input
        conversation = [{"from": "human", "value": prompt}]

        # Convert response format to logits processor
        if response_format:
            xgr_logits_processor = self.get_xgr_logits_processor(response_format)
        else:
            xgr_logits_processor = None

        # Extract media from the conversation

        # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
        media, media_meta = extract_media(conversation, self.config)

        # Process media
        media_config = defaultdict(dict)
        for name in media:
            if name == "sound":
                sounds = process_sounds(media["sound"]).half()         
                media[name] = [sound for sound in sounds]
                sound_feature_masks = process_sound_masks(media_meta["sound_feature_masks"]).half()   
                media_meta["sound_feature_masks"] = [sound_mask for sound_mask in sound_feature_masks]
                sound_embed_masks = process_sound_masks(media_meta["sound_embed_masks"]).half()   
                media_meta["sound_embed_masks"] = [sound_mask for sound_mask in sound_embed_masks]
            else:
                raise ValueError(f"Unsupported media type: {name}")
           

        # Tokenize the conversation
        input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)

        # Set up the generation config
        generation_config = generation_config or self.default_generation_config

        # Generate the response
        try:
            output_ids = self.generate(
                input_ids=input_ids,
                media=media,
                media_config=media_config,
                media_meta=media_meta,
                generation_config=generation_config,
                logits_processor=xgr_logits_processor,  # structured generation
            )
        except ValueError:
            if not generation_config.do_sample:
                raise
            # FIXME(zhijianl): This is a temporary workaround for the sampling issue
            logging.warning("Generation failed with sampling, retrying with greedy decoding.")
            generation_config.do_sample = False
            output_ids = self.generate(
                input_ids=input_ids,
                media=media,
                media_config=media_config,
                media_meta=media_meta,
                generation_config=generation_config,
                logits_processor=xgr_logits_processor,
            )

        # Decode the response
        response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
        return response

    @property
    def default_generation_config(self) -> GenerationConfig:
        generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
        if self.tokenizer.eos_token_id is None:
            raise ValueError("Tokenizer must have an EOS token")
        if generation_config.max_length == GenerationConfig().max_length:
            generation_config.max_length = self.tokenizer.model_max_length
        if generation_config.pad_token_id is None:
            generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
        if generation_config.bos_token_id is None:
            generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
        if generation_config.eos_token_id is None:
            generation_config.eos_token_id = self.tokenizer.stop_token_ids
        return generation_config