File size: 5,379 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

# This file is modified from https://github.com/haotian-liu/LLaVA/

from abc import abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F



class SoundTower(nn.Module):
    def __init__(self, sound_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.sound_tower_name = sound_tower
        self.cfg_only = None

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers and the output length of the audio encoder
        """
        input_lengths = (input_lengths - 1) // 2 + 1
        output_lengths = (input_lengths - 2) // 2 + 1
        return input_lengths, output_lengths

    def forward(self, sounds, mask=None):

        if type(sounds) is list:
            sound_features = []
            for sound in sounds:
                # Calculate attention mask
                audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1))
                # for cases where only one window is there for the audio_clip
                batch_size, _, max_mel_seq_len = sound.shape
                max_seq_len = (max_mel_seq_len - 2) // 2 + 1
                seq_range = (
                        torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device)
                        .unsqueeze(0)
                        .expand(batch_size, max_seq_len)
                    )
                lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
                padding_mask = seq_range >= lengths_expand
                audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
                        batch_size, 1, max_seq_len, max_seq_len
                    )
                audio_attention_mask = audio_attention_mask_.to(
                        dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device
                    )
                audio_attention_mask[audio_attention_mask_] = float("-inf")
                # Calculate features
                sound_feature = self.sound_tower(sound, attention_mask=audio_attention_mask)
                sound_feature = sound_feature.to(sound.dtype)
                sound_feature = sound_feature.last_hidden_state
                sound_features.append(sound_feature)
        else:
            # Calculate attention mask
            if len(sounds.shape) == 5:
                sounds = sounds.squeeze(0).squeeze(1)
                mask = mask.squeeze(0)
            audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1))
            # for cases where only one window is there for the audio_clip
            batch_size, _, max_mel_seq_len = sounds.shape
            max_seq_len = (max_mel_seq_len - 2) // 2 + 1
            seq_range = (
                    torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device)
                    .unsqueeze(0)
                    .expand(batch_size, max_seq_len)
                )
            lengths_expand = audio_feat_lengths.expand(batch_size, max_seq_len)
            padding_mask = seq_range >= lengths_expand
            audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
                    batch_size, 1, max_seq_len, max_seq_len
                )
            audio_attention_mask = audio_attention_mask_.to(
                    dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device
                )
            audio_attention_mask[audio_attention_mask_] = float("-inf")
            # Calculate features
            sound_features = self.sound_tower(sounds, attention_mask=audio_attention_mask)
            sound_features = sound_features.last_hidden_state
            sound_features = sound_features.to(sounds.dtype)

        return sound_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.sound_tower.dtype

    @property
    def config(self):
        if self.is_loaded:
            return self.sound_tower.config
        else:
            return self.cfg_only
            
    @property
    def device(self):
        return self.sound_tower.device

    @property
    def hidden_size(self):
        return self.config.hidden_size