File size: 8,537 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

import os
import time
from copy import deepcopy

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.function import Function, InplaceFunction
from torch.cuda import amp

from .language_model.configuration_quantize import QuantizationConfig
from .qfunction import block_cut, block_quant, block_reshape
from .qutils import quant_get_local_rank
from .realquantize.division_transpose import fp8_division_transpose
from .realquantize.linear import fp8_linear_backward, fp8_linear_forward
from .realquantize.quantize_and_transpose import fp8_quantize_and_transpose


class QLinearTE(nn.Linear):
    def __init__(self, in_features, out_features, bias=True, device=None, args=None, layer_idx=0):
        super().__init__(in_features, out_features, bias, device)
        try:  # TODO: remove this try except (llama & qwen2)
            self.args = QuantizationConfig(**deepcopy(args))
        except:
            self.args = deepcopy(args)

        self.apply_quantize = min(self.weight.shape[0], self.weight.shape[1]) >= 3584

        if quant_get_local_rank() == 0:
            if self.apply_quantize:
                print(f"[qlinear debug] Apply QLinear, {layer_idx}")
            else:
                print(f"[qlinear debug] Don't QLinear, {layer_idx} since the weight is too small: {self.weight.shape}")
        self.layer_idx = layer_idx
        self.layer_name = None

    def forward(self, Input):
        # if torch.randn(1) < 0.01:
        #     print(Input.shape, self.weight.shape)
        if self.training and self.apply_quantize:
            # if False:
            output = QuantLinearTE.apply(Input, self.weight, self.bias, self.args, self.layer_name)
        else:
            output = F.linear(Input, self.weight, self.bias)

        return output


# if int(os.environ.get("LOCAL_RANK")) == 0:
#     import IPython
#     IPython.embed()
# else:
#     import time
#     time.sleep(1000)

# class QuantLinearTE(Function):
#     @staticmethod
#     def forward(ctx, input, weight, bias, args, layer_type):
#         ctx.saved = input, weight, bias, args, layer_type
#         return F.linear(input, weight, bias)

#     @staticmethod
#     def backward(ctx, grad_output):
#         input, weight, bias, args, layer_type = ctx.saved

#         C_in = input.shape[-1]
#         C_out = grad_output.shape[-1]

#         grad_output_flatten = grad_output.reshape(-1, C_out)
#         input_flatten = input.reshape(-1, C_in)

#         if grad_output_flatten.dtype == input_flatten.dtype:
#             grad_weight = grad_output_flatten.t().mm(input_flatten)
#         else:
#             grad_weight = grad_output_flatten.float().t().mm(input_flatten)

#         if grad_output_flatten.dtype == weight.dtype:
#             grad_input = grad_output_flatten.mm(weight)
#         else:
#             grad_input = grad_output_flatten.float().mm(weight)

#         if bias is not None:
#             grad_bias = grad_output_flatten.sum(0)
#         else:
#             grad_bias = None

#         grad_input_transform = grad_input.reshape(input.size())

#         return grad_input_transform, grad_weight, grad_bias, None, None


class QuantLinearTE(Function):
    @staticmethod
    @amp.custom_fwd(cast_inputs=torch.bfloat16)
    def forward(ctx, input, weight, bias, args, layer_name):

        time_bench = os.getenv("TIME_BENCH")

        if time_bench:
            start_1 = torch.cuda.Event(enable_timing=True)
            start_1.record()

        # Qinput, Iscale, Qinput_t = fp8_division_transpose(input, 16, args.fabit)
        Qinput, Iscale, Qinput_t = fp8_quantize_and_transpose(input, 16, args.fabit, transpose_output_2d=True)

        if time_bench:
            end_1 = torch.cuda.Event(enable_timing=True)
            end_1.record()
            start_2 = torch.cuda.Event(enable_timing=True)
            start_2.record()

        # Qweight, Wscale, Qweight_t = fp8_division_transpose(weight, 16, args.fwbit)
        Qweight, Wscale, Qweight_t = fp8_quantize_and_transpose(weight, 16, args.fwbit, transpose_output_2d=True)

        if time_bench:
            end_2 = torch.cuda.Event(enable_timing=True)
            end_2.record()
            start_3 = torch.cuda.Event(enable_timing=True)
            start_3.record()

        ctx.saved = Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name
        fc_output = fp8_linear_forward(Qinput, Iscale, Qweight, Wscale, False, 0, bias)

        if time_bench:
            end_3 = torch.cuda.Event(enable_timing=True)
            end_3.record()
            start_4 = torch.cuda.Event(enable_timing=True)
            start_4.record()

            output = F.linear(input, weight, bias)

            end_4 = torch.cuda.Event(enable_timing=True)
            end_4.record()

            torch.cuda.synchronize()
            if quant_get_local_rank() == 0:
                print(
                    f"[Forward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | "
                    f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {input.shape} | Weight shape: {weight.shape}"
                )

        return fc_output

    @staticmethod
    @amp.custom_bwd
    def backward(ctx, grad_output):
        Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name = ctx.saved

        time_bench = os.getenv("TIME_BENCH")
        if time_bench:
            start_1 = torch.cuda.Event(enable_timing=True)
            start_1.record()

        # Qgrad_output, Gscale, Qgrad_output_t = fp8_division_transpose(grad_output, 16, args.bobit, stochastic=False)
        Qgrad_output, Gscale, Qgrad_output_t = fp8_quantize_and_transpose(
            grad_output, 16, args.bobit, stochastic=False, transpose_output_2d=True
        )

        if time_bench:
            end_1 = torch.cuda.Event(enable_timing=True)
            end_1.record()
            start_2 = torch.cuda.Event(enable_timing=True)
            start_2.record()

        grad_input, grad_weight = fp8_linear_backward(
            Qinput_t,
            Iscale,
            Qgrad_output,
            Gscale,
            Qgrad_output_t,
            Qweight_t,
            Wscale,
            16,
            bias,
            stochastic=False,
            dgrad_quantize=False,
        )

        if time_bench:
            end_2 = torch.cuda.Event(enable_timing=True)
            end_2.record()
            start_3 = torch.cuda.Event(enable_timing=True)
            start_3.record()

        if bias is not None:
            grad_bias = grad_output.reshape(-1, grad_output.shape[-1]).sum(0)
        else:
            grad_bias = None

        if time_bench:
            end_3 = torch.cuda.Event(enable_timing=True)
            end_3.record()

            # ========== BF16 ==========
            C_in = Qinput_t.shape[0]
            C_out = grad_output.shape[-1]
            grad_output_flatten = grad_output.reshape(-1, C_out)
            input_flatten = Qinput_t.t().reshape(-1, C_in).to(torch.bfloat16)
            weight = Qweight_t.t().to(torch.bfloat16)

            start_4 = torch.cuda.Event(enable_timing=True)
            start_4.record()

            if grad_output_flatten.dtype == input_flatten.dtype:
                _grad_weight = grad_output_flatten.t().mm(input_flatten)
            else:
                _grad_weight = grad_output_flatten.float().t().mm(input_flatten)

            if grad_output_flatten.dtype == weight.dtype:
                _grad_input = grad_output_flatten.mm(weight)
            else:
                _grad_input = grad_output_flatten.float().mm(weight)

            end_4 = torch.cuda.Event(enable_timing=True)
            end_4.record()

            torch.cuda.synchronize()
            if quant_get_local_rank() == 0:
                print(
                    f"[Backward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | "
                    f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {Qinput_t.shape} | Weight shape: {weight.shape}"
                )

        return grad_input, grad_weight, grad_bias, None, None