Spaces:
Running
on
A100
Running
on
A100
File size: 6,458 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
def list_has_common_element(list1, list2):
set1 = set(list1)
set2 = set(list2)
return len(set1.intersection(set2)) > 0
def calculate_scale_num(input, row_block, col_block):
if len(input.shape) > 2:
input = input.reshape(-1, input.shape[2])
elif len(input.shape) == 2:
pass
else:
raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
M, N = input.shape[0], input.shape[1]
if row_block == -1:
row_block = M
if col_block == -1:
col_block = N
return input.numel() / (row_block * col_block)
def quant_get_local_rank() -> int:
return int(os.environ.get("LOCAL_RANK") or 0)
def format_string_with_condition(
input_string,
condition_config,
symm,
bits,
blocksize_config,
input_pad=20,
):
padded_string = input_string.ljust(input_pad)
output_string = padded_string
for k, v in condition_config.items():
if v:
output_string = output_string + k.ljust(10) + "True".ljust(6) + "".ljust(6)
else:
output_string = output_string + k.ljust(10) + "".ljust(6) + "False".ljust(6)
output_string = output_string + f"Symm {symm}".ljust(10)
for k, v in bits.items():
output_string = output_string + f"{k} bit".ljust(10) + v.ljust(10)
for k, v in blocksize_config.items():
output_string += f"{k}: {v}".ljust(15)
return output_string
def print_warning(sentence):
print("*" * (len(sentence) + 4))
print(f"* {sentence} *")
print("*" * (len(sentence) + 4))
def check_nan_inf(tensor, check_nan, check_inf):
if check_nan:
contain_nan = torch.isnan(tensor).any()
else:
contain_nan = False
if check_inf:
contain_inf = torch.isinf(tensor).any()
else:
contain_inf = False
return contain_nan, contain_inf
def move_torch_to_numpy(tensor):
if tensor is None:
return None
if tensor.is_cuda:
tensor = tensor.cpu()
return tensor.detach().float().numpy()
def flatten_to_1d(tensor):
if tensor is None:
return None
return tensor.reshape(-1)
def get_uniform_bin(tensor, num_bins, blank=0.05):
bin_arr = np.linspace(
tensor.min() - (tensor.max() - tensor.min()) * blank,
tensor.max() + (tensor.max() - tensor.min()) * blank,
num_bins,
endpoint=True,
)
return bin_arr
def determine_log_scale_hist(counts, threshold_ratio=3):
max_count = np.max(counts)
third_max_count = np.partition(counts, -3)[-3]
if max_count >= threshold_ratio * third_max_count:
return True
else:
return False
def print_list_with_separator(lst):
separator = "-" * 30
for item in lst:
print(item, item.dtype)
print(separator)
def save_tensor(tensor, RQtensor, Qtensor, fb, aw, layer_name):
visualize_path = os.path.join("visualize", aw, fb)
file_name = f"{layer_name}.pt"
os.makedirs(visualize_path, exist_ok=True)
torch.save(
{"tensor": tensor, "RQtensor": RQtensor, "Qtensor": Qtensor, "fb": fb, "aw": aw, "layer_name": layer_name},
os.path.join(visualize_path, file_name),
)
print(f"{aw} {fb} {layer_name} saved!")
def visualize_distribution(pt_path):
print(pt_path)
saved_tensor = torch.load(pt_path, map_location="cpu")
# os.remove(pt_path)
tensor = saved_tensor["tensor"]
RQtensor = saved_tensor["RQtensor"]
Qtensor = saved_tensor["Qtensor"]
fb = saved_tensor["fb"]
aw = saved_tensor["aw"]
layer_name = saved_tensor["layer_name"]
# visualize_path = os.path.join("visualize", aw, fb, layer_name)
# file_name = "distribution.png"
# os.makedirs(visualize_path, exist_ok=True)
visualize_path = os.path.join("visualize", aw, fb)
file_name = f"{layer_name}.png"
os.makedirs(visualize_path, exist_ok=True)
# MSE = (tensor - Qtensor).norm().item()
tensor, RQtensor, Qtensor = move_torch_to_numpy(tensor), move_torch_to_numpy(RQtensor), move_torch_to_numpy(Qtensor)
tensor, RQtensor, Qtensor = flatten_to_1d(tensor), flatten_to_1d(RQtensor), flatten_to_1d(Qtensor)
fig, axs = plt.subplots(3, 2, figsize=(120, 80))
plt.rcParams["font.size"] = 80
for ax in axs.flatten():
ax.tick_params(axis="both", labelsize=80)
num_bins = 1000
# Tensor distribution - original
if tensor is not None:
axs[0, 0].hist(tensor, bins=num_bins, color="blue", alpha=0.5)
axs[0, 0].set_title(f"Original Distribution of tensor, {tensor.dtype}")
# Tensor distribution - log scale
axs[0, 1].hist(tensor, bins=num_bins, color="blue", alpha=0.5)
axs[0, 1].set_yscale("log")
axs[0, 1].set_title(f"Log Scale Distribution of tensor, {tensor.dtype}")
axs[0, 1].set_xlabel("use log scale")
# Qtensor distribution - original
if RQtensor is not None:
axs[1, 0].hist(RQtensor, bins=num_bins, color="red", alpha=0.5)
axs[1, 0].set_title(f"Original Distribution of RQtensor, {Qtensor.dtype}")
# Qtensor distribution - log scale
axs[1, 1].hist(RQtensor, bins=num_bins, color="red", alpha=0.5)
axs[1, 1].set_yscale("log")
axs[1, 1].set_title(f"Log Scale Distribution of RQtensor, {Qtensor.dtype}")
axs[1, 1].set_xlabel("use log scale")
# Qtensor distribution - original
if Qtensor is not None:
Q_outlier = np.max(np.abs(Qtensor))
axs[2, 0].hist(Qtensor, bins=num_bins, color="red", alpha=0.5)
axs[2, 0].set_title(f"Original Distribution of Qtensor, {Qtensor.dtype}")
# axs[2, 0].set_xlim(-Q_outlier, Q_outlier)
# Qtensor distribution - log scale
axs[2, 1].hist(Qtensor, bins=num_bins, color="red", alpha=0.5)
axs[2, 1].set_yscale("log")
axs[2, 1].set_title(f"Log Scale Distribution of Qtensor, {Qtensor.dtype}")
axs[2, 1].set_xlabel("use log scale")
# axs[2, 1].set_xlim(-Q_outlier, Q_outlier)
plt.tight_layout()
plt.savefig(os.path.join(visualize_path, file_name))
plt.close(fig)
print(f"{aw} {fb} {layer_name} distribution finish!")
exit(0)
|