File size: 13,257 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

import torch
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

try:
    from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8
    from .division import _stochastic_rounding
except:
    from common import SCALE_MIN_THRES, FP8_MAX_VALUE, convert_str_to_fp8, convert_fp8_to_embit
    from division import _stochastic_rounding

import os
import time

"""Linear Layer Forward + Backward"""
"""Input uses per-tensor quantization"""
"""Output is full-precision/BF16 (for FlashAttention) or 1 * 16 quantization (for the rest)"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""


def get_configs_io_block():
    configs = []
    for nstages in [3]:
        for block_m in [128, 256]:
            for block_n in [128, 256]:
                for block_k in [128, 256]:
                    for nwarps in [8]:
                        configs.append(
                            triton.Config(
                                {"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k},
                                num_stages=nstages,
                                num_warps=nwarps,
                            )
                        )
    return configs


@triton.autotune(
    configs=get_configs_io_block(),
    key=["N"],
)
@triton.jit
def _fp8matmul_kernel(
    A,
    B,
    C,
    noise_ptr,  # noise for stochastic
    M,
    N,
    K,  #
    stride_am,
    stride_ak,  #
    stride_bk,
    stride_bn,  #
    stride_cm,
    stride_cn,  ##
    Scale_A,
    Scale_B,
    Scale_C,
    stride_scm,
    stride_scn,
    output_quantize: tl.constexpr,
    QB: tl.constexpr,  # default to use 1 * 16 quantization
    BIAS,
    fp8_max,
    e_bit,
    m_bit,
    SCALE_MIN_THRES: tl.constexpr,
    STOCHASTIC: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_K: tl.constexpr,
    GROUP_M: tl.constexpr,
):
    # matrix multiplication
    pid = tl.program_id(0)
    grid_m = tl.cdiv(M, BLOCK_M)
    grid_n = tl.cdiv(N, BLOCK_N)
    # re-order program ID for better L2 performance
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + (pid % group_size)
    pid_n = (pid % width) // (group_size)
    # do matrix multiplication
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
    rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
    rk = tl.arange(0, BLOCK_K)
    # pointers
    A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
    B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
    for k in range(0, tl.cdiv(K, BLOCK_K)):
        # a = tl.load(A)
        # b = tl.load(B)
        k_remaining = K - k * BLOCK_K
        _0 = tl.zeros((1, 1), dtype=C.dtype.element_ty)
        a = tl.load(A, mask=rk[None, :] < k_remaining, other=_0)
        b = tl.load(B, mask=rk[:, None] < k_remaining, other=_0)

        acc = tl.dot(a, b, acc)

        A += BLOCK_K * stride_ak
        B += BLOCK_K * stride_bk

    scale_a = tl.load(Scale_A)
    scale_b = tl.load(Scale_B)
    scale_ab = scale_a.to(tl.float32) * scale_b.to(tl.float32)
    # fp8 dequantize
    acc = acc * scale_ab

    if BIAS:
        bias = tl.load(BIAS + rbn)
        acc = acc + bias

    # rematerialize rm and rn to save registers
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
    mask = (rm < M)[:, None] & (rn < N)[None, :]

    if output_quantize:
        acc = tl.reshape(acc, (BLOCK_M, BLOCK_N // QB, QB))
        abs_acc = tl.abs(acc)
        acc_max = tl.max(abs_acc, axis=2) + SCALE_MIN_THRES
        # tl.device_print("acc_max", acc_max)
        acc_scale = acc_max / fp8_max
        # tl.device_print("acc_scale", acc_scale)
        acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB, 1))
        acc = tl.div_rn(acc, acc_scale)
        acc = tl.reshape(acc, (BLOCK_M, BLOCK_N))

        if STOCHASTIC:
            noise_block_ptr = noise_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
            noise = tl.load(noise_block_ptr, boundary_check=(0, 1))
            acc = _stochastic_rounding(acc, noise, e_bit, m_bit)

        acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB))
        acc = acc.to(C.dtype.element_ty)

        rsm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
        rsn = pid_n * BLOCK_N // QB + tl.arange(0, BLOCK_N // QB)
        Scale_C = Scale_C + (rsm[:, None] * stride_scm + rsn[None, :] * stride_scn)

        tl.store(C, acc, mask=mask, boundary_check=(0, 1))
        tl.store(Scale_C, acc_scale)

    else:
        # handles write-back with reduction-splitting
        acc = acc.to(C.dtype.element_ty)
        tl.store(C, acc, mask=mask)


def fp8matmul(a, b, output_quantize, scale_a, scale_b, QB, bias=None, stochastic=False):
    # Deal with batched input
    if len(a.shape) == 3:
        BS, batched = a.shape[0], True
        a = a.reshape(-1, a.shape[2])
    else:
        batched = False

    # Check constraints.
    assert a.shape[1] == b.shape[0], "Incompatible dimensions"
    assert a.is_contiguous(), "Matrix A must be contiguous"
    M, K = a.shape
    K, N = b.shape
    fp8MaxValue = FP8_MAX_VALUE[a.dtype]  # E4M3 and E5M2 have different max value
    e_bit, m_bit = convert_fp8_to_embit[a.dtype]

    # Allocates output.
    if output_quantize:
        c = torch.empty((M, N), device=a.device, dtype=a.dtype)
        # c = torch.empty((M, N), device=a.device, dtype=torch.float32)
        scale_c = torch.empty((M, N // QB), device=a.device, dtype=torch.float32)
    else:
        c = torch.empty((M, N), device=a.device, dtype=torch.bfloat16)
        scale_c = torch.empty(
            (1, 1), device=a.device, dtype=torch.bfloat16
        )  # This line is useless, equivalent to scale_c = None

    if stochastic:
        noise = torch.empty_like(c, dtype=torch.float32).uniform_(-0.5, 0.5)
    else:
        noise = None

    # 1D launch kernel where each block gets its own program.
    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
    _fp8matmul_kernel[grid](
        a,
        b,
        c,
        noise,  #
        M,
        N,
        K,  #
        a.stride(0),
        a.stride(1),  #
        b.stride(0),
        b.stride(1),  #
        c.stride(0),
        c.stride(1),  #
        scale_a,
        scale_b,
        scale_c,
        scale_c.stride(0),
        scale_c.stride(1),
        output_quantize=output_quantize,
        QB=QB,
        BIAS=bias,
        fp8_max=fp8MaxValue,
        e_bit=e_bit,
        m_bit=m_bit,
        SCALE_MIN_THRES=SCALE_MIN_THRES,
        STOCHASTIC=stochastic,
        # BLOCK_M=128,
        # BLOCK_N=256,
        # BLOCK_K=128,
        GROUP_M=8,
        # num_stages=3,
        # num_warps=8,
    )
    # Reshape output to batch
    if batched:
        c = c.reshape(BS, -1, N)
        if output_quantize:
            scale_c = scale_c.reshape(BS, -1, N // QB)
            return c, scale_c
    else:
        if output_quantize:
            scale_c = scale_c.reshape(M, N // QB)
            return c, scale_c
    return c


def fp8_linear_forward(x, s, w, s_w, output_quantize, QB, bias=None):
    w_t = w.t()
    return fp8matmul(x, w_t, output_quantize, s, s_w, QB, bias)


# def fp8_linear_forward(x, s, w, s_w, output_quantize, QB):
#     print("you are using the wrong linear function. ")
#     w_t = w.t()
#     if output_quantize:
#         return fp8matmul(x, w_t, True, s, s_w, QB)
#     else:
#         y = fp8matmul(x, w_t, False, s, s_w, QB)

#         return y


def fp8_linear_backward(
    x_t, s, g, s_g, g_t, w_t, s_w, QB, bias=None, stochastic=False, dgrad_quantize=True
):  # dgrad_quantize=True for backward before flashattention
    batched = False
    if len(g.shape) == 3:  # others must be of 2D!
        batched = True
        BS = g.shape[0]
        g = g.reshape(-1, g.shape[-1])

    w_t_t = w_t.t()
    x_t_t = x_t.t()
    if dgrad_quantize:
        y, s_y = fp8matmul(g, w_t_t, True, s_g, s_w, QB, stochastic=stochastic)
    else:
        y = fp8matmul(g, w_t_t, False, s_g, s_w, QB)

    w_g = fp8matmul(g_t, x_t_t, False, s_g, s, QB)

    if batched:
        y = y.reshape(BS, -1, y.shape[-1])
        if dgrad_quantize:
            if s_y.numel() > 1:
                s_y = s_y.reshape(BS, -1, s_y.shape[-1])
    if dgrad_quantize:
        return y, s_y, w_g
    else:
        return y, w_g


if __name__ == "__main__":

    # Input = torch.load("/home/hxi/lustre_hxi/workdir/FP8_OLMo/debug_linear.pt")
    # mul_x_t, mul_s, out_g, out_gs, out_g_t, weight2_t, weight2_s, qgroup_size = Input

    # fc2_g, fc2_gs, weight2_grad = fp8_linear_backward(mul_x_t, mul_s, out_g, out_gs, out_g_t, weight2_t, weight2_s, qgroup_size, stochastic=True)

    # # fc2_x = fp8_linear_forward(flash_x, flash_s, weight2, weight2_s, False, 16)
    # import IPython
    # IPython.embed()

    def validity_check(M, N, K):
        a = torch.randn((M, K), device="cuda", dtype=torch.float32)
        b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16)

        scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn(
            (1), device="cuda", dtype=torch.bfloat16
        )
        a = a.to(torch.float8_e4m3fn)
        b = b.T
        b = b.to(torch.float8_e4m3fn)

        output_fp8_y, output_fp8_s = fp8matmul(a, b, True, scale_a, scale_b, 16)
        a_32, b_32 = a.to(torch.float32), b.to(torch.float32)
        output_torch = torch.matmul(a_32, b_32) * scale_a * scale_b

        import IPython

        IPython.embed()

    def time_check(M, N, K):
        a = torch.randn((M, K), device="cuda", dtype=torch.float32)
        b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16)

        scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn(
            (1), device="cuda", dtype=torch.bfloat16
        )
        a = a.to(torch.float8_e4m3fn)
        b = b.T
        b = b.to(torch.float8_e4m3fn)

        for _ in range(10):
            torch.cuda.synchronize()
            start = time.time()
            output_fp8_y = fp8matmul(a, b, False, scale_a, scale_b, 16)
            torch.cuda.synchronize()
            end = time.time()
            print(end - start)

        # import IPython
        # IPython.embed()

    configs = []
    for fp8_inputs in [True]:
        configs.append(
            triton.testing.Benchmark(
                x_names=["M", "N", "K"],  # Argument names to use as an x-axis for the plot
                x_vals=[512 * i for i in range(2, 17)],  # Different possible values for `x_name`
                line_arg="provider",  # Argument name whose value corresponds to a different line in the plot
                # Possible values for `line_arg`
                # Don't compare to cublas for fp8 cases as torch.matmul doesn't support fp8 at the moment.
                line_vals=["triton"] if fp8_inputs else ["cublas", "triton"],  # Label name for the lines
                line_names=["Triton"] if fp8_inputs else ["cuBLAS", "Triton"],  # Line styles
                styles=[("green", "-"), ("blue", "-")],
                ylabel="TFLOPS",  # Label name for the y-axis
                plot_name="matmul-performance-"
                + (
                    "fp16" if not fp8_inputs else "fp8"
                ),  # Name for the plot, used also as a file name for saving the plot.
                args={"fp8_inputs": fp8_inputs},
            )
        )

    @triton.testing.perf_report(configs)
    def benchmark(M, N, K, provider, fp8_inputs):
        a = torch.randn((M, K), device="cuda", dtype=torch.bfloat16)
        b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16)
        if fp8_inputs:
            a = a.to(torch.float8_e4m3fn)
            b = b.T
            b = b.to(torch.float8_e4m3fn)
            scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn(
                (1), device="cuda", dtype=torch.bfloat16
            )
        quantiles = [0.5, 0.2, 0.8]
        if provider == "cublas":
            import IPython

            IPython.embed()
            ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), quantiles=quantiles)
        if provider == "triton":
            ms, min_ms, max_ms = triton.testing.do_bench(
                lambda: fp8matmul(a, b, False, scale_a, scale_b, 16), quantiles=quantiles
            )
        perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
        return perf(ms), perf(max_ms), perf(min_ms)

    torch.set_printoptions(sci_mode=False, linewidth=200, precision=6)
    # time_check(4096, 11008, 5380)
    # validity_check(2048, 1024, 4096)
    benchmark.run(show_plots=True, print_data=True)