File size: 7,195 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

import torch

# 4 block
import triton
import triton.language as tl
from triton.language.extra.cuda import libdevice

from .common import FP8_MAX_VALUE, SCALE_MIN_THRES

"""Calculate the gradient of bias Operator"""
"""Input uses per-tensor quantization, and should be transposed"""
"""Output uses similar to the bias shape"""
"""The input can be 2D or 3D, but the calculation is performed in 2D"""

# The kernel with 1 load operation and 4 store operation
def get_configs_io_block():
    configs = []
    for nstages in [3, 4, 5]:
        for block_m in [32, 64, 128]:
            for block_n in [32, 64, 128]:
                for nwarps in [4, 8, 16]:
                    configs.append(
                        triton.Config(
                            {"BLOCK_M": block_m, "BLOCK_N": block_n},
                            num_stages=nstages,
                            num_warps=nwarps,
                        )
                    )
    return configs


convert_str_to_fp8 = {"E4M3": torch.float8_e4m3fn, "E5M2": torch.float8_e5m2}


@triton.autotune(
    configs=[] + get_configs_io_block(),
    key=[
        "N",
    ],
)
@triton.heuristics(
    {
        "BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
    }
)
@triton.jit
def _fp8_trans_grad_bias_kernel(
    output_scale_ptr,  # output
    input_t_ptr,  # input
    M,
    N,
    SN,
    QB: tl.constexpr,
    fp8_max,  # shape
    input_stride_0,
    input_stride_1,  # input stride
    s_output_stride_0,
    s_output_stride_1,  # scale of output stride
    SCALE_MIN_THRES: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_SN: tl.constexpr,
):  # CUDA block size

    # Block PID
    pid = tl.program_id(0)
    NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
    pid_dim0 = pid // NUM_BLOCK_N
    pid_dim1 = pid % NUM_BLOCK_N

    # pointers
    input_block_ptr = tl.make_block_ptr(
        base=input_ptr,
        shape=(M, N),
        strides=(input_stride_0, input_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
        block_shape=(BLOCK_M, BLOCK_N),
        order=(1, 0),
    )

    input = tl.load(input_block_ptr, boundary_check=(0, 1))
    input = input.to(tl.float32)

    output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))

    # Quantize Scale calculation
    abs_output = tl.abs(output)
    max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
    scale_output = max_val / fp8_max
    scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))

    scale_output = scale_output.to(output_scale_ptr.type.element_ty)
    scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))

    scale_output_ptr = tl.make_block_ptr(
        base=output_scale_ptr,
        shape=(M, SN),
        strides=(s_output_stride_0, s_output_stride_1),
        offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
        block_shape=(BLOCK_M, BLOCK_SN),
        order=(1, 0),
    )

    tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))


def fp8_quantize_and_transpose(x, QB, fp8type, transpose_output_2d=False, stochastic=False):
    # Change batched 3D input to 2D
    batched = False
    if len(x.shape) == 3:
        batched = True
        BS = x.shape[0]
        x = x.reshape(-1, x.shape[-1])

    # defining the input and output tensor
    M, N = x.shape
    SN = N // QB

    fp8type = convert_str_to_fp8[fp8type]
    s_y = torch.empty((M, SN), dtype=torch.float32, device=x.device)
    fp8MaxValue = FP8_MAX_VALUE[fp8type]  # E4M3 and E5M2 have different max value

    grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)

    _fp8_quantize_and_transpose_kernel[grid](
        s_y,
        x,
        M,
        N,
        SN,
        QB,
        fp8MaxValue,
        x.stride(0),
        x.stride(1),
        s_y.stride(0),
        s_y.stride(1),
        SCALE_MIN_THRES=SCALE_MIN_THRES,
    )

    s_y_max = s_y.max()
    qy, s_y_max, qy_t = fp8_division_transpose(
        x, QB, fp8type, s_y_max, stochastic=stochastic
    )  # Stochastic Rounding happens here

    # Recover 2D to 3D
    if batched:
        qy = qy.reshape(BS, -1, qy.shape[-1])
        if not transpose_output_2d:
            qy_t = qy_t.reshape(BS, -1, qy_t.shape[-1])

    return qy, s_y_max, qy_t  # y_t is expected to be 2D tensor


# I change the dtype of both the input tensor and the output tensor. I use torch.float32, torch.float16, and torch.fp8

configs = []
for SL in [8192]:
    configs.append(
        triton.testing.Benchmark(  # test different matrix size influence
            x_names=["CDIM"],
            x_vals=[1024, 2048, 4096, 8192],
            line_arg="provider",
            line_vals=["triton", "torch"],
            line_names=["triton", "torch"],
            styles=[("blue", "-"), ("green", "-")],
            ylabel="time-cost",
            plot_name=f"FP8gelu<SL={SL}>",
            args={"BS": 4, "SL": SL, "QB": 16, "fp8type": torch.float8_e4m3fn, "mode": "time-consuming"},
        )
    )


@triton.testing.perf_report(configs)
def bench_load_store(
    BS, SL, CDIM, QB, fp8type, provider, mode="forward"
):  # I only use triton as the provider, and mode when benchmarking
    # create data
    x = torch.randn(BS, SL, CDIM).cuda()
    _qx = x.reshape(BS, SL, CDIM // QB, QB)
    sx = _qx.abs().amax(dim=(3)) / FP8_MAX_VALUE[fp8type]
    sx = sx.to(torch.bfloat16)
    _qx = (_qx / sx.unsqueeze(3)).to(fp8type)
    qx = _qx.reshape(BS, SL, CDIM)

    quantiles = [0.5, 0.2, 0.8]
    # utility functions
    if provider == "triton":

        def y_fwd():
            fp8_quantize_and_transpose(qx, sx, QB)

    if provider == "torch":
        torch_gelu = torch.nn.SiLU()

        def y_fwd():
            return torch_gelu(x)

    # forward pass
    if mode == "time-consuming":
        convert_func = lambda ms: ms
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
    # backward pass
    if mode == "gbps":
        convert_func = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
    return convert_func(ms), convert_func(max_ms), convert_func(min_ms)


def validity_check(BS, SL, CDIM, QB, fp8type=torch.float8_e4m3fn):
    # create data
    x = torch.randn(BS * SL, CDIM).cuda()

    # torch result

    # triton result
    x_triton, s_triton, x_triton_t = fp8_quantize_and_transpose(x, QB, "E4M3")

    _x_triton = x_triton.reshape(BS * SL, CDIM // QB, QB)
    _x_triton = _x_triton.to(torch.float32)
    s_triton = s_triton.unsqueeze(2)
    output_triton = (_x_triton * s_triton).reshape(BS * SL, CDIM)

    import IPython

    IPython.embed()


if __name__ == "__main__":
    torch.manual_seed(0)
    torch.set_printoptions(precision=8, linewidth=1600, sci_mode=False, edgeitems=3)
    validity_check(BS=4, SL=256, CDIM=512, QB=16, fp8type=torch.float8_e4m3fn)
    bench_load_store.run(save_path=f"result/time/multi_quantize_block_quantize/BLSZ=64", print_data=True)