Spaces:
Running
on
A100
Running
on
A100
File size: 14,254 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass, field
from typing import Optional
import transformers
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
lazy_preprocess: bool = False
is_multimodal: bool = False
image_folder: Optional[str] = field(default=None)
image_aspect_ratio: Optional[str] = "resize"
min_tiles: Optional[int] = 1
max_tiles: Optional[int] = 12
video_max_tiles: Optional[int] = 1 # value larger than 1 means we're training w/ tiling for videos.
audio_frames: Optional[int] = 5
data_mixture: str = "llava_1_5_mm_align"
eval_data_mixture: str = None
vflan_no_system_prompt: bool = False
downsample_video: bool = False
# for video training
num_video_frames: int = 8
fps: float = 0.0 # 0.0 means we do not use fps at all. Always sample the same number of frames.
@dataclass
class ModelArguments:
version: Optional[str] = field(default="auto")
chat_template: Optional[str] = field(default=None)
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
vision_tower: Optional[str] = field(default="google/siglip-so400m-patch14-384")
speech_tower: Optional[str] = field(default="openai/whisper-large-v2")
sound_tower: Optional[str] = field(default="imagebind_huge.pth")
mm_projector: Optional[str] = field(default="mlp2x_gelu")
speech_mm_projector: Optional[str] = field(default="mlp")
sound_mm_projector: Optional[str] = field(default="mlp")
mm_use_im_start_end: bool = field(default=False)
mm_use_im_patch_token: bool = field(default=False)
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
mm_vision_select_feature: Optional[str] = field(default="patch")
vision_resolution: Optional[int] = field(default=-1)
interpolate_mode: Optional[str] = field(default="linear")
drop_path_rate: Optional[float] = field(default=0.0)
mlp_path: Optional[str] = field(default=None)
s2: bool = field(default=False)
dynamic_s2: bool = field(default=False)
s2_scales: Optional[str] = field(default="336,672,1008")
s2_max_split_size: int = field(default=336)
num_time_tokens: int = field(default=0)
time_token_format: str = field(default="<t{t}>")
soft_ce_std: float = field(default=1.0)
image_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicImageEncoder"}')
video_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicVideoEncoder"}')
speech_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicSpeechEncoder"}')
sound_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicSoundEncoder"}')
s2_resize_output_to_scale_idx: int = field(default=0)
# Quantization and low precision training
quantize_model: Optional[str] = field(default="false")
symm: Optional[bool] = field(default=True)
epsilon: Optional[float] = field(default=1e-10)
fabit: Optional[str] = field(default="E4M3")
fwbit: Optional[str] = field(default="E4M3")
bobit: Optional[str] = field(default="E5M2")
row_blocksize: Optional[int] = -1 # -1 means only 1 quantization group along row axis
col_blocksize: Optional[int] = -1 # -1 means only 1 quantization group along column axis
qchoice: Optional[list[str]] = field(
default_factory=lambda: [
"none",
"all",
"linear",
"mlp",
"attn",
"gelu",
"layernorm",
"backbone",
"residual",
"backbone",
],
)
pad_to_multiple_of: int = 0 # if sequence length * batch size can not be divided by 128, the triton implementation of fp8 matmul when calculating weight gradient will become highly inefficient. Therefore, I want to pad the sequence length to a multiple of some exponent of 2. This will be used in prepare_inputs_labels_for_multimodal()
# Memory Efficient FP8 related
Ubit: str = field(default="100")
quantize_model: str = field(default="false", metadata={"help": "Enable model quantization"})
symm: bool = field(default=True, metadata={"help": "Use symmetric quantization"})
epsilon: float = field(default=1e-10, metadata={"help": "Small epsilon for numerical stability"})
fabit: str = field(default="E4M3", metadata={"help": "Bit format for forward activation"})
fwbit: str = field(default="E4M3", metadata={"help": "Bit format for forward weights"})
fobit: str = field(default="E4M3", metadata={"help": "Bit format for forward output"})
babit: str = field(default="E5M2", metadata={"help": "Bit format for backward activation"})
bwbit: str = field(default="E5M2", metadata={"help": "Bit format for backward weights"})
bobit: str = field(default="E5M2", metadata={"help": "Bit format for backward output"})
qchoice: str = field(default="none", metadata={"help": "Quantization choice"})
group_size: int = field(default=-1, metadata={"help": "Group size for quantization"})
weight_memory_efficient: bool = field(default=True, metadata={"help": "Enable memory-efficient weights"})
min_blockunit_row: int = field(default=4)
min_blockunit_col: int = field(default=4)
refine_residual_fp: bool = field(default=False)
refine_ln_pertoken: bool = field(default=False)
refine_ln_blocksize: bool = field(default=False)
refine_ln_blocksize_but_only_forward: bool = field(default=False)
refine_ln_blocksize_but_only_backward: bool = field(default=False)
refine_attn_blocksize: bool = field(default=False)
refine_mlp_blocksize: bool = field(default=False)
refine_row_blocksize: int = field(default=4)
refine_col_blocksize: int = field(default=4)
draw_distribution_forward: bool = field(default=False)
draw_distribution_backward: bool = field(default=False)
# Quantize Optimizer Related
use_quantize_optimizer: bool = field(default=False)
row_blocksize_optimizer: int = field(default=1)
col_blocksize_optimizer: int = field(default=128)
pad_block: bool = field(default=False)
first_order_bit: Optional[str] = field(default=None)
first_order_quant_type: Optional[str] = field(default=None)
second_order_bit: Optional[str] = field(default=None)
second_order_quant_type: Optional[str] = field(default=None)
epsilon_optimizer: float = field(default=1e-15)
# Quantization and low precision training
quantize_model: Optional[str] = field(default="false")
symm: Optional[bool] = field(default=True)
epsilon: Optional[float] = field(default=1e-10)
fabit: Optional[str] = field(default="E4M3")
fwbit: Optional[str] = field(default="E4M3")
bobit: Optional[str] = field(default="E5M2")
row_blocksize: Optional[int] = -1 # -1 means only 1 quantization group along row axis
col_blocksize: Optional[int] = -1 # -1 means only 1 quantization group along column axis
qchoice: Optional[list[str]] = field(
default_factory=lambda: [
"none",
"all",
"linear",
"mlp",
"attn",
"gelu",
"layernorm",
"backbone",
"residual",
"backbone",
],
)
pad_to_multiple_of: int = 0 # if sequence length * batch size can not be divided by 128, the triton implementation of fp8 matmul when calculating weight gradient will become highly inefficient. Therefore, I want to pad the sequence length to a multiple of some exponent of 2. This will be used in prepare_inputs_labels_for_multimodal()
# Memory Efficient FP8 related
Ubit: str = field(default="100")
quantize_model: str = field(default="false", metadata={"help": "Enable model quantization"})
symm: bool = field(default=True, metadata={"help": "Use symmetric quantization"})
epsilon: float = field(default=1e-10, metadata={"help": "Small epsilon for numerical stability"})
fabit: str = field(default="E4M3", metadata={"help": "Bit format for forward activation"})
fwbit: str = field(default="E4M3", metadata={"help": "Bit format for forward weights"})
fobit: str = field(default="E4M3", metadata={"help": "Bit format for forward output"})
babit: str = field(default="E5M2", metadata={"help": "Bit format for backward activation"})
bwbit: str = field(default="E5M2", metadata={"help": "Bit format for backward weights"})
bobit: str = field(default="E5M2", metadata={"help": "Bit format for backward output"})
qchoice: str = field(default="none", metadata={"help": "Quantization choice"})
group_size: int = field(default=-1, metadata={"help": "Group size for quantization"})
weight_memory_efficient: bool = field(default=True, metadata={"help": "Enable memory-efficient weights"})
min_blockunit_row: int = field(default=4)
min_blockunit_col: int = field(default=4)
refine_residual_fp: bool = field(default=False)
refine_ln_pertoken: bool = field(default=False)
refine_ln_blocksize: bool = field(default=False)
refine_ln_blocksize_but_only_forward: bool = field(default=False)
refine_ln_blocksize_but_only_backward: bool = field(default=False)
refine_attn_blocksize: bool = field(default=False)
refine_mlp_blocksize: bool = field(default=False)
refine_row_blocksize: int = field(default=4)
refine_col_blocksize: int = field(default=4)
draw_distribution_forward: bool = field(default=False)
draw_distribution_backward: bool = field(default=False)
# Quantize Optimizer Related
use_quantize_optimizer: bool = field(default=False)
row_blocksize_optimizer: int = field(default=1)
col_blocksize_optimizer: int = field(default=128)
pad_block: bool = field(default=False)
first_order_bit: Optional[str] = field(default=None)
first_order_quant_type: Optional[str] = field(default=None)
second_order_bit: Optional[str] = field(default=None)
second_order_quant_type: Optional[str] = field(default=None)
epsilon_optimizer: float = field(default=1e-15)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
remove_unused_columns: bool = field(default=False)
mpt_attn_impl: Optional[str] = field(default="triton")
tune_vision_tower: bool = field(default=False)
tune_speech_tower: bool = field(default=False)
tune_sound_tower: bool = field(default=False)
tune_language_model: bool = field(default=False)
tune_mm_projector: bool = field(default=False)
tune_speech_mm_projector: bool = field(default=False)
tune_sound_mm_projector: bool = field(default=False)
model_dtype: str = field(default="torch.bfloat16")
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."},
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."},
)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
# lora-related
lora_enable: bool = False
use_dora: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
lora_llm: bool = False
lora_vt: bool = False
lora_st: bool = False
lora_sot: bool = False
dpo: bool = False
use_one_logger: bool = True
longvila_sampler: bool = False
dpo_beta: float = field(default=0.1)
mm_projector_lr: Optional[float] = None
speech_mm_projector_lr: Optional[float] = None
sound_mm_projector_lr: Optional[float] = None
vision_tower_lr: Optional[float] = None
speech_tower_lr: Optional[float] = None
sound_tower_lr: Optional[float] = None
group_by_modality_length: bool = field(default=False)
total_time_limit: int = field(default=-1, metadata={"help": "Timeout limit for this job (in minutes)."})
pre_terminate_time: int = field(
default=10,
metadata={"help": "Time to terminate the task inadvance (minutes), saveing checkpoints needs time."},
)
seq_parallel_size: int = field(
default=-1,
metadata={"help": "The degree of sequence parallelism (SP). SP is disabled by default (value: -1). "},
)
seq_parallel_ring_size: int = field(
default=-1,
metadata={
"help": "The communication process group size using optimized Ring Attention approach in SP, where `seq_parallel_size` = `seq_parallel_ring_size` x `seq_parallel_ulysses_size` (determined by other two terms). Ring Attention approach is disabled by default in SP. This setting is adjustable only when `seq_parallel_size` > 1."
},
)
seq_parallel_ring_type: str = field(
default="ring_varlen",
metadata={
"help": "Ring Attention implementation. Support ['ring_varlen', 'zigzag_ring_varlen'] in 2D attention. Only works when `seq_parallel_ring_size` > 1."
},
)
debug_e2e: bool = field(
default=False,
metadata={"help": "Whether enter debug mode."},
)
|