File size: 14,254 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from dataclasses import dataclass, field
from typing import Optional

import transformers


@dataclass
class DataArguments:
    data_path: str = field(default=None, metadata={"help": "Path to the training data."})
    lazy_preprocess: bool = False
    is_multimodal: bool = False
    image_folder: Optional[str] = field(default=None)
    image_aspect_ratio: Optional[str] = "resize"
    min_tiles: Optional[int] = 1
    max_tiles: Optional[int] = 12
    video_max_tiles: Optional[int] = 1  # value larger than 1 means we're training w/ tiling for videos.
    audio_frames: Optional[int] = 5
    data_mixture: str = "llava_1_5_mm_align"
    eval_data_mixture: str = None
    vflan_no_system_prompt: bool = False
    downsample_video: bool = False

    # for video training
    num_video_frames: int = 8
    fps: float = 0.0  # 0.0 means we do not use fps at all. Always sample the same number of frames.


@dataclass
class ModelArguments:
    version: Optional[str] = field(default="auto")
    chat_template: Optional[str] = field(default=None)
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    vision_tower: Optional[str] = field(default="google/siglip-so400m-patch14-384")
    speech_tower: Optional[str] = field(default="openai/whisper-large-v2")
    sound_tower: Optional[str] = field(default="imagebind_huge.pth")
    mm_projector: Optional[str] = field(default="mlp2x_gelu")
    speech_mm_projector: Optional[str] = field(default="mlp")
    sound_mm_projector: Optional[str] = field(default="mlp")
    mm_use_im_start_end: bool = field(default=False)
    mm_use_im_patch_token: bool = field(default=False)
    mm_vision_select_layer: Optional[int] = field(default=-1)  # default to the last layer
    mm_vision_select_feature: Optional[str] = field(default="patch")
    vision_resolution: Optional[int] = field(default=-1)
    interpolate_mode: Optional[str] = field(default="linear")
    drop_path_rate: Optional[float] = field(default=0.0)
    mlp_path: Optional[str] = field(default=None)
    s2: bool = field(default=False)
    dynamic_s2: bool = field(default=False)
    s2_scales: Optional[str] = field(default="336,672,1008")
    s2_max_split_size: int = field(default=336)
    num_time_tokens: int = field(default=0)
    time_token_format: str = field(default="<t{t}>")
    soft_ce_std: float = field(default=1.0)

    image_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicImageEncoder"}')
    video_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicVideoEncoder"}')
    speech_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicSpeechEncoder"}')
    sound_encoder: str = field(default='{"_target_": "llava.model.encoders.BasicSoundEncoder"}')

    s2_resize_output_to_scale_idx: int = field(default=0)

    # Quantization and low precision training
    quantize_model: Optional[str] = field(default="false")
    symm: Optional[bool] = field(default=True)

    epsilon: Optional[float] = field(default=1e-10)
    fabit: Optional[str] = field(default="E4M3")
    fwbit: Optional[str] = field(default="E4M3")
    bobit: Optional[str] = field(default="E5M2")
    row_blocksize: Optional[int] = -1  # -1 means only 1 quantization group along row axis
    col_blocksize: Optional[int] = -1  # -1 means only 1 quantization group along column axis
    qchoice: Optional[list[str]] = field(
        default_factory=lambda: [
            "none",
            "all",
            "linear",
            "mlp",
            "attn",
            "gelu",
            "layernorm",
            "backbone",
            "residual",
            "backbone",
        ],
    )

    pad_to_multiple_of: int = 0  # if sequence length * batch size can not be divided by 128, the triton implementation of fp8 matmul when calculating weight gradient will become highly inefficient. Therefore, I want to pad the sequence length to a multiple of some exponent of 2. This will be used in prepare_inputs_labels_for_multimodal()

    # Memory Efficient FP8 related
    Ubit: str = field(default="100")
    quantize_model: str = field(default="false", metadata={"help": "Enable model quantization"})
    symm: bool = field(default=True, metadata={"help": "Use symmetric quantization"})
    epsilon: float = field(default=1e-10, metadata={"help": "Small epsilon for numerical stability"})
    fabit: str = field(default="E4M3", metadata={"help": "Bit format for forward activation"})
    fwbit: str = field(default="E4M3", metadata={"help": "Bit format for forward weights"})
    fobit: str = field(default="E4M3", metadata={"help": "Bit format for forward output"})
    babit: str = field(default="E5M2", metadata={"help": "Bit format for backward activation"})
    bwbit: str = field(default="E5M2", metadata={"help": "Bit format for backward weights"})
    bobit: str = field(default="E5M2", metadata={"help": "Bit format for backward output"})
    qchoice: str = field(default="none", metadata={"help": "Quantization choice"})
    group_size: int = field(default=-1, metadata={"help": "Group size for quantization"})
    weight_memory_efficient: bool = field(default=True, metadata={"help": "Enable memory-efficient weights"})

    min_blockunit_row: int = field(default=4)
    min_blockunit_col: int = field(default=4)
    refine_residual_fp: bool = field(default=False)
    refine_ln_pertoken: bool = field(default=False)
    refine_ln_blocksize: bool = field(default=False)
    refine_ln_blocksize_but_only_forward: bool = field(default=False)
    refine_ln_blocksize_but_only_backward: bool = field(default=False)
    refine_attn_blocksize: bool = field(default=False)
    refine_mlp_blocksize: bool = field(default=False)
    refine_row_blocksize: int = field(default=4)
    refine_col_blocksize: int = field(default=4)
    draw_distribution_forward: bool = field(default=False)
    draw_distribution_backward: bool = field(default=False)

    # Quantize Optimizer Related
    use_quantize_optimizer: bool = field(default=False)
    row_blocksize_optimizer: int = field(default=1)
    col_blocksize_optimizer: int = field(default=128)
    pad_block: bool = field(default=False)
    first_order_bit: Optional[str] = field(default=None)
    first_order_quant_type: Optional[str] = field(default=None)
    second_order_bit: Optional[str] = field(default=None)
    second_order_quant_type: Optional[str] = field(default=None)
    epsilon_optimizer: float = field(default=1e-15)

    # Quantization and low precision training
    quantize_model: Optional[str] = field(default="false")
    symm: Optional[bool] = field(default=True)

    epsilon: Optional[float] = field(default=1e-10)
    fabit: Optional[str] = field(default="E4M3")
    fwbit: Optional[str] = field(default="E4M3")
    bobit: Optional[str] = field(default="E5M2")
    row_blocksize: Optional[int] = -1  # -1 means only 1 quantization group along row axis
    col_blocksize: Optional[int] = -1  # -1 means only 1 quantization group along column axis
    qchoice: Optional[list[str]] = field(
        default_factory=lambda: [
            "none",
            "all",
            "linear",
            "mlp",
            "attn",
            "gelu",
            "layernorm",
            "backbone",
            "residual",
            "backbone",
        ],
    )

    pad_to_multiple_of: int = 0  # if sequence length * batch size can not be divided by 128, the triton implementation of fp8 matmul when calculating weight gradient will become highly inefficient. Therefore, I want to pad the sequence length to a multiple of some exponent of 2. This will be used in prepare_inputs_labels_for_multimodal()

    # Memory Efficient FP8 related
    Ubit: str = field(default="100")
    quantize_model: str = field(default="false", metadata={"help": "Enable model quantization"})
    symm: bool = field(default=True, metadata={"help": "Use symmetric quantization"})
    epsilon: float = field(default=1e-10, metadata={"help": "Small epsilon for numerical stability"})
    fabit: str = field(default="E4M3", metadata={"help": "Bit format for forward activation"})
    fwbit: str = field(default="E4M3", metadata={"help": "Bit format for forward weights"})
    fobit: str = field(default="E4M3", metadata={"help": "Bit format for forward output"})
    babit: str = field(default="E5M2", metadata={"help": "Bit format for backward activation"})
    bwbit: str = field(default="E5M2", metadata={"help": "Bit format for backward weights"})
    bobit: str = field(default="E5M2", metadata={"help": "Bit format for backward output"})
    qchoice: str = field(default="none", metadata={"help": "Quantization choice"})
    group_size: int = field(default=-1, metadata={"help": "Group size for quantization"})
    weight_memory_efficient: bool = field(default=True, metadata={"help": "Enable memory-efficient weights"})

    min_blockunit_row: int = field(default=4)
    min_blockunit_col: int = field(default=4)
    refine_residual_fp: bool = field(default=False)
    refine_ln_pertoken: bool = field(default=False)
    refine_ln_blocksize: bool = field(default=False)
    refine_ln_blocksize_but_only_forward: bool = field(default=False)
    refine_ln_blocksize_but_only_backward: bool = field(default=False)
    refine_attn_blocksize: bool = field(default=False)
    refine_mlp_blocksize: bool = field(default=False)
    refine_row_blocksize: int = field(default=4)
    refine_col_blocksize: int = field(default=4)
    draw_distribution_forward: bool = field(default=False)
    draw_distribution_backward: bool = field(default=False)

    # Quantize Optimizer Related
    use_quantize_optimizer: bool = field(default=False)
    row_blocksize_optimizer: int = field(default=1)
    col_blocksize_optimizer: int = field(default=128)
    pad_block: bool = field(default=False)
    first_order_bit: Optional[str] = field(default=None)
    first_order_quant_type: Optional[str] = field(default=None)
    second_order_bit: Optional[str] = field(default=None)
    second_order_quant_type: Optional[str] = field(default=None)
    epsilon_optimizer: float = field(default=1e-15)


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    tune_vision_tower: bool = field(default=False)
    tune_speech_tower: bool = field(default=False)
    tune_sound_tower: bool = field(default=False)
    tune_language_model: bool = field(default=False)
    tune_mm_projector: bool = field(default=False)
    tune_speech_mm_projector: bool = field(default=False)
    tune_sound_mm_projector: bool = field(default=False)
    model_dtype: str = field(default="torch.bfloat16")
    model_max_length: int = field(
        default=512,
        metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
    )
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."},
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."},
    )
    bits: int = field(default=16, metadata={"help": "How many bits to use."})
    # lora-related
    lora_enable: bool = False
    use_dora: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"
    lora_llm: bool = False
    lora_vt: bool = False
    lora_st: bool = False
    lora_sot: bool = False
    dpo: bool = False
    use_one_logger: bool = True
    longvila_sampler: bool = False
    dpo_beta: float = field(default=0.1)
    mm_projector_lr: Optional[float] = None
    speech_mm_projector_lr: Optional[float] = None
    sound_mm_projector_lr: Optional[float] = None
    vision_tower_lr: Optional[float] = None
    speech_tower_lr: Optional[float] = None
    sound_tower_lr: Optional[float] = None
    group_by_modality_length: bool = field(default=False)
    total_time_limit: int = field(default=-1, metadata={"help": "Timeout limit for this job (in minutes)."})
    pre_terminate_time: int = field(
        default=10,
        metadata={"help": "Time to terminate the task inadvance (minutes), saveing checkpoints needs time."},
    )
    seq_parallel_size: int = field(
        default=-1,
        metadata={"help": "The degree of sequence parallelism (SP). SP is disabled by default (value: -1). "},
    )
    seq_parallel_ring_size: int = field(
        default=-1,
        metadata={
            "help": "The communication process group size using optimized Ring Attention approach in SP, where `seq_parallel_size` = `seq_parallel_ring_size` x `seq_parallel_ulysses_size` (determined by other two terms). Ring Attention approach is disabled by default in SP. This setting is adjustable only when `seq_parallel_size` > 1."
        },
    )
    seq_parallel_ring_type: str = field(
        default="ring_varlen",
        metadata={
            "help": "Ring Attention implementation. Support ['ring_varlen', 'zigzag_ring_varlen'] in 2D attention. Only works when `seq_parallel_ring_size` > 1."
        },
    )
    debug_e2e: bool = field(
        default=False,
        metadata={"help": "Whether enter debug mode."},
    )