Spaces:
Running
on
A100
Running
on
A100
File size: 48,372 Bytes
174ae06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 |
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/haotian-liu/LLaVA/
import json
import os
import random
import time
from typing import Dict, List, Optional
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import ConcatDataset, Dataset, DistributedSampler, RandomSampler, Sampler
from transformers import PreTrainedModel, Trainer
from transformers.modeling_utils import unwrap_model
from transformers.trainer import ALL_LAYERNORM_LAYERS # ShardedDDPOption,
from transformers.trainer import get_parameter_names, has_length, is_sagemaker_mp_enabled, logger
from llava.train.sequence_parallel import get_pg_manager
from llava.trl.trainer import DPOTrainer
import numpy as np
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
print(name, "no ignore status")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
return to_return
def split_to_even_chunks(indices, lengths, num_chunks):
"""
Split a list of indices into `chunks` chunks of roughly equal lengths.
"""
if len(indices) % num_chunks != 0:
return [indices[i::num_chunks] for i in range(num_chunks)]
num_indices_per_chunk = len(indices) // num_chunks
chunks = [[] for _ in range(num_chunks)]
chunks_lengths = [0 for _ in range(num_chunks)]
for index in indices:
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
chunks[shortest_chunk].append(index)
chunks_lengths[shortest_chunk] += lengths[index]
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
chunks_lengths[shortest_chunk] = float("inf")
return chunks
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
assert all(l != 0 for l in lengths), "Should not have zero length."
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
# all samples are in the same modality
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
lang_shuffle = [
lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)
]
megabatch_size = world_size * batch_size
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
last_mm = mm_megabatches[-1]
last_lang = lang_megabatches[-1]
additional_batch = last_mm + last_lang
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in megabatch_indices]
if len(additional_batch) > 0:
megabatches.append(sorted(additional_batch))
return [i for megabatch in megabatches for i in megabatch]
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = world_size * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
class VILADistributedSampler(DistributedSampler):
"""This class is implemented by Jason Lu."""
def __init__(
self,
dataset,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
batch_size=None,
# NOTE: this is the total size but not per-worker
sample_len_list=None,
force_accumulation=True,
sp_degree: int = 1,
gradient_accumulation_steps: int = 1,
) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval" " [0, {}]".format(rank, num_replicas - 1)
)
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = True # always True
self.sp_degree = max(1, sp_degree)
self.bs_divisible_by_sp = batch_size % self.sp_degree == 0
# Consider sequence parallelism
if self.sp_degree > 1: # Sequence Parallelism is enabled
PROCESS_GROUP_MANAGER = get_pg_manager()
self.dp_rank = PROCESS_GROUP_MANAGER.dp_rank
self.dp_num_replicas = num_replicas // sp_degree
self.corresponding_ranks = list(range(self.dp_rank * self.sp_degree, (self.dp_rank + 1) * self.sp_degree))
else:
self.dp_rank = rank
self.dp_num_replicas = num_replicas
self.batch_size = batch_size
self.global_batch_size = batch_size * self.dp_num_replicas
# NOTE: org_ is without drop last
self.org_sample_len_list = self.per_replica_samples = sample_len_list
assert sum(sample_len_list) == len(self.dataset)
if self.drop_last: # type: ignore[arg-type]
self.per_replica_samples = [
sample_len
// (self.num_replicas * self.batch_size * gradient_accumulation_steps // self.sp_degree)
* self.batch_size
* gradient_accumulation_steps
// self.sp_degree
for sample_len in self.per_replica_samples
]
self.num_samples = sum(self.per_replica_samples)
else:
raise NotImplementedError
self.total_size = self.num_samples * self.num_replicas
self.total_samples = [samples * self.num_replicas for samples in self.per_replica_samples]
self.shuffle = shuffle
self.seed = seed
# whether to force accumulate
self.force_accumulation = force_accumulation
def __len__(self) -> int:
return self.num_samples * self.sp_degree
def __iter__(self):
indices = list(range(len(self.dataset)))
# 1. split the full indices first (note: without drop last at this moment)
indices_list = []
for i in range(len(self.org_sample_len_list)):
indices_list.append(
indices[sum(self.org_sample_len_list[:i]) : sum(self.org_sample_len_list[:i]) + self.total_samples[i]]
)
assert sum([len(indices) for indices in indices_list]) == self.total_size, (
sum([len(indices) for indices in indices_list]),
self.total_size,
)
if (
self.sp_degree > 1 and self.bs_divisible_by_sp
): # Sequence Parallelism is enabled, to ensure the same behavior as data parallelism
dp_indices_dict = {} # {rank: indices_list}
all_indices_dict = {} # {rank: all_indices}
for i in self.corresponding_ranks:
dp_indices_list = []
for idx, indices in enumerate(indices_list):
dp_indices_list.append(
indices[i * self.per_replica_samples[idx] : (i + 1) * self.per_replica_samples[idx]]
)
random.seed(self.seed + self.epoch)
for indice in range(len(dp_indices_list)):
random.shuffle(dp_indices_list[indice])
dp_indices_dict[i] = dp_indices_list.copy()
for rank, dp_indices_list in dp_indices_dict.items():
dp_indices_list = sorted(dp_indices_list, key=lambda x: -len(x))
dp_all_indices = [-1] * self.num_samples
indices_available = list(range(self.num_samples))
for indice in dp_indices_list:
original_indices = range(len(indice))
transformed_indices = [idx * len(indices_available) // len(indice) for idx in original_indices]
mapped_indices = [indices_available[idx] for idx in transformed_indices]
# update indices_available
for idx in reversed(transformed_indices):
del indices_available[idx]
for i, idx in enumerate(mapped_indices):
dp_all_indices[idx] = indice[i]
all_indices_dict[rank] = dp_all_indices
# Interleaving Merge
merged_indices = []
interleaved_indices = []
for item_idx in range(len(all_indices_dict[self.corresponding_ranks[0]])):
for rank in self.corresponding_ranks:
interleaved_indices.append(all_indices_dict[rank][item_idx])
merged_indices.append(interleaved_indices)
all_indices = merged_indices[0]
else:
# let's first do subsample
for idx, indices in enumerate(indices_list):
indices_list[idx] = indices[
self.rank * self.per_replica_samples[idx] : (self.rank + 1) * self.per_replica_samples[idx]
]
random.seed(self.seed + self.epoch)
for indice in range(len(indices_list)):
random.shuffle(indices_list[indice])
indices_list = sorted(indices_list, key=lambda x: -len(x))
all_indices = [-1] * self.num_samples
indices_available = list(range(self.num_samples))
for indice in indices_list:
original_indices = range(len(indice))
transformed_indices = [idx * len(indices_available) // len(indice) for idx in original_indices]
mapped_indices = [indices_available[idx] for idx in transformed_indices]
# update indices_available
for idx in reversed(transformed_indices):
del indices_available[idx]
for i, idx in enumerate(mapped_indices):
all_indices[idx] = indice[i]
assert -1 not in all_indices
return iter(all_indices)
class LongVILADistributedSampler(VILADistributedSampler):
"""This class is implemented by Yukang Chen."""
def __iter__(self):
def batch_shuffle(indices):
batch_indices = list(range(indices[0] // self.batch_size, indices[-1] // self.batch_size + 1))
random.shuffle(batch_indices)
indices_shuffled = [
batch_indices[i // self.batch_size] * self.batch_size + index % self.batch_size
for i, index in enumerate(indices)
]
return indices_shuffled
indices = list(range(len(self.dataset)))
# 1. split the full indices first (note: without drop last at this moment)
indices_list = []
for i in range(len(self.org_sample_len_list)):
indices_list.append(
indices[sum(self.org_sample_len_list[:i]) : sum(self.org_sample_len_list[:i]) + self.total_samples[i]]
)
assert sum([len(indices) for indices in indices_list]) == self.total_size, (
sum([len(indices) for indices in indices_list]),
self.total_size,
)
if self.sp_degree > 1: # Sequence Parallelism is enabled, to ensure the same behavior as data parallelism
dp_indices_dict = {} # {rank: indices_list}
all_indices_dict = {} # {rank: all_indices}
for i in self.corresponding_ranks:
dp_indices_list = []
for idx, indices in enumerate(indices_list):
dp_indices_list.append(
indices[i * self.per_replica_samples[idx] : (i + 1) * self.per_replica_samples[idx]]
)
random.seed(self.seed + self.epoch)
for indice in range(len(dp_indices_list)):
batch_shuffle(dp_indices_list[indice])
dp_indices_dict[i] = dp_indices_list.copy()
for rank, dp_indices_list in dp_indices_dict.items():
dp_indices_list = sorted(dp_indices_list, key=lambda x: -len(x))
dp_all_indices = [-1] * self.num_samples
indices_available = list(range(self.num_samples))
for indice in dp_indices_list:
original_indices = range(len(indice))
transformed_indices = [idx * len(indices_available) // len(indice) for idx in original_indices]
mapped_indices = [indices_available[idx] for idx in transformed_indices]
# update indices_available
for idx in reversed(transformed_indices):
del indices_available[idx]
for i, idx in enumerate(mapped_indices):
dp_all_indices[idx] = indice[i]
all_indices_dict[rank] = dp_all_indices
# Interleaving Merge
merged_indices = []
interleaved_indices = []
for item_idx in range(len(all_indices_dict[self.corresponding_ranks[0]])):
for rank in self.corresponding_ranks:
interleaved_indices.append(all_indices_dict[rank][item_idx])
merged_indices.append(interleaved_indices)
all_indices = merged_indices[0]
else:
# let's first do subsample
for idx, indices in enumerate(indices_list):
indices_list[idx] = indices[
self.rank * self.per_replica_samples[idx] : (self.rank + 1) * self.per_replica_samples[idx]
]
random.seed(self.seed + self.epoch)
for indice in range(len(indices_list)):
batch_shuffle(indices_list[indice])
indices_list = sorted(indices_list, key=lambda x: -len(x))
all_indices = [-1] * self.num_samples
indices_available = list(range(self.num_samples))
for indice in indices_list:
original_indices = range(len(indice))
transformed_indices = [idx * len(indices_available) // len(indice) for idx in original_indices]
mapped_indices = [indices_available[idx] for idx in transformed_indices]
# update indices_available
for idx in reversed(transformed_indices):
del indices_available[idx]
for i, idx in enumerate(mapped_indices):
all_indices[idx] = indice[i]
assert -1 not in all_indices
return iter(all_indices)
def get_length_grouped_batches(
lengths: List[int],
batch_size: int,
world_size: int,
generator=None,
merge: bool = True,
) -> List:
N = len(lengths)
M = world_size * batch_size
if N < M:
# fallback: just random permute everything
idx = np.arange(N)
if generator is not None:
seed = generator.initial_seed()
rng = np.random.RandomState(seed)
else:
rng = np.random.RandomState()
rng.shuffle(idx)
if merge:
return idx.tolist()
else:
# one megabatch only
out = [idx.tolist()]
# pad to world_size empty lists if needed
return [out + [[]] * (world_size - 1)]
# 1) build RNG
if generator is not None:
seed = generator.initial_seed()
rng = np.random.RandomState(seed)
else:
rng = np.random.RandomState()
# 2) keys for lexsort: primary = -length, secondary = random
lengths_arr = np.array(lengths, dtype=np.int64)
key_length = -lengths_arr
key_rand = rng.permutation(N)
# 3) single global lexsort (last key is primary)
sorted_idx = np.lexsort((key_rand, key_length))
# 4) trim to full megabatches
num_mb = len(sorted_idx) // M
trimmed = sorted_idx[: num_mb * M]
# 5) reshape to [num_mb, M]
mb = trimmed.reshape(num_mb, M)
# 6) optional shuffle of whole megabatches
rng.shuffle(mb)
# 7) split each row into [world_size, batch_size]
mb = mb.reshape(num_mb, world_size, batch_size)
if merge:
# flatten in order megabatch → replica → sample
return mb.reshape(-1).tolist()
else:
# build nested Python lists: [ [ [..], [..], … ], … ]
return [
[mb[i, r].tolist() for r in range(world_size)]
for i in range(num_mb)
]
# def get_length_grouped_batches(
# lengths: List[int],
# batch_size: int,
# world_size: int,
# generator=None,
# merge: bool = True,
# ) -> List:
# """
# Create length-grouped megabatches.
# First, a random permutation of indices is computed. Then we split
# into megabatches of size (world_size * batch_size) and sort each
# megabatch by descending length. Finally, each megabatch is split
# into `world_size` chunks (one per replica).
# If merge is True, a flat list is returned; if False, the nested
# structure is kept.
# """
# indices = torch.randperm(len(lengths), generator=generator)
# megabatch_size = world_size * batch_size
# # Partition indices into megabatches
# megabatches = [
# indices[i : i + megabatch_size].tolist()
# for i in range(0, len(lengths), megabatch_size)
# ]
# # Within each megabatch, sort indices in descending order of length.
# sorted_megabatches = [
# sorted(megabatch, key=lambda i: lengths[i], reverse=True)
# for megabatch in megabatches
# ]
# # Split each sorted megabatch evenly among replicas.
# split_megabatches = [
# split_to_even_chunks(megabatch, lengths, world_size)
# for megabatch in sorted_megabatches
# ]
# if merge:
# # Flatten into a single list.
# return [i for megabatch in split_megabatches for batch in megabatch for i in batch]
# else:
# # Return the nested structure: list of megabatches, each containing a list (of length world_size) of batches.
# return split_megabatches
class LengthGroupedVILADistributedSampler(DistributedSampler):
"""
A sampler that groups examples by (approximate) length and then
distributes them across replicas following VILA’s accumulation logic.
Parameters:
- dataset: the dataset to sample from.
- batch_size: batch size per replica.
- lengths: a list of lengths (one per example in the dataset).
- num_replicas: total number of distributed replicas (if not provided,
will be inferred from torch.distributed).
- rank: the rank of the current process.
- shuffle: whether to shuffle groups.
- seed: base random seed.
- drop_last: whether to drop the tail of incomplete megabatches (set True).
- sp_degree: sequence-parallel degree.
- gradient_accumulation_steps: used for scaling the effective batch size.
- group_by_modality: if True, you might call a different grouping function.
- generator: optional torch.Generator for determinism.
- force_accumulation: whether to force the VILA accumulation ordering.
"""
def __init__(
self,
dataset,
batch_size: int,
lengths: List[int],
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = True,
sp_degree: int = 1,
gradient_accumulation_steps: int = 1,
group_by_modality: bool = True,
generator=None,
force_accumulation: bool = True,
):
super().__init__(dataset, num_replicas=num_replicas, rank=rank,
shuffle=shuffle, seed=seed, drop_last=drop_last)
self.dataset = dataset
self.batch_size = batch_size
self.lengths = lengths
self.generator = generator
self.group_by_modality = group_by_modality
self.sp_degree = max(1, sp_degree)
self.gradient_accumulation_steps = gradient_accumulation_steps
self.force_accumulation = force_accumulation
self.seed = seed
self.epoch = 0 # This should be updated externally at each epoch.
self.world_size = self.num_replicas # from DistributedSampler
self.bs_divisible_by_sp = (batch_size % self.sp_degree == 0)
if self.sp_degree > 1:
# Get sequence parallelism group info.
PROCESS_GROUP_MANAGER = get_pg_manager() # Must be implemented.
self.dp_rank = PROCESS_GROUP_MANAGER.dp_rank
self.dp_num_replicas = self.num_replicas // self.sp_degree
self.corresponding_ranks = list(range(self.dp_rank * self.sp_degree, (self.dp_rank + 1) * self.sp_degree))
else:
self.dp_rank = self.rank
self.dp_num_replicas = self.num_replicas
# Compute the number of full megabatches (each of size world_size * batch_size).
megabatch_size = self.world_size * self.batch_size
num_full_megabatches = len(self.dataset) // megabatch_size
# For each full megabatch, each replica gets batch_size examples.
self.num_samples = num_full_megabatches * self.batch_size
def __len__(self) -> int:
# When using sequence parallelism, the effective number may be scaled.
return self.num_samples * (self.sp_degree if self.sp_degree > 1 else 1)
def __iter__(self):
# Get the nested list of length-grouped batches.
# Each element in "megabatches" is a list of length world_size, one per replica.
megabatches = get_length_grouped_batches(
self.lengths,
self.batch_size,
self.world_size,
generator=self.generator,
merge=False,
)
# For each megabatch, select the batch corresponding to this replica.
indices_list = []
for megabatch in megabatches:
if self.rank < len(megabatch):
indices_list.append(megabatch[self.rank])
total_samples = sum(len(lst) for lst in indices_list)
if self.sp_degree > 1 and self.bs_divisible_by_sp:
# --- Sequence Parallelism branch ---
# For each of the corresponding sequence-parallel ranks, split each batch.
dp_indices_dict = {}
all_indices_dict = {}
for r in self.corresponding_ranks:
dp_indices_list = []
for lst in indices_list:
# Split each list into sp_degree equal parts.
part_size = len(lst) // self.sp_degree
dp_indices_list.append(lst[r * part_size : (r + 1) * part_size])
random.seed(self.seed + self.epoch)
for sublist in dp_indices_list:
random.shuffle(sublist)
dp_indices_dict[r] = dp_indices_list.copy()
# Now, for each sequence-parallel rank, remap the indices.
for r, dp_list in dp_indices_dict.items():
# Sort the sublists by descending length.
dp_list = sorted(dp_list, key=lambda x: -len(x))
num_samples_r = sum(len(x) for x in dp_list)
dp_all_indices = [-1] * num_samples_r
indices_available = list(range(num_samples_r))
for sublist in dp_list:
n = len(sublist)
transformed_indices = [i * len(indices_available) // n for i in range(n)]
mapped_indices = [indices_available[j] for j in transformed_indices]
for j in sorted(transformed_indices, reverse=True):
del indices_available[j]
for i, pos in enumerate(mapped_indices):
dp_all_indices[pos] = sublist[i]
all_indices_dict[r] = dp_all_indices
# Interleave the indices from all sequence-parallel ranks.
merged_indices = []
# Assumes each dp_all_indices list is of the same length.
interleaved_length = len(next(iter(all_indices_dict.values())))
for i in range(interleaved_length):
for r in self.corresponding_ranks:
merged_indices.append(all_indices_dict[r][i])
final_indices = merged_indices
else:
# --- Non-sequence-parallel branch ---
random.seed(self.seed + self.epoch)
for sublist in indices_list:
random.shuffle(sublist)
# Sort the groups by descending length.
indices_list = sorted(indices_list, key=lambda x: -len(x))
dp_all_indices = [-1] * total_samples
indices_available = list(range(total_samples))
for sublist in indices_list:
n = len(sublist)
transformed_indices = [i * len(indices_available) // n for i in range(n)]
mapped_indices = [indices_available[j] for j in transformed_indices]
for j in sorted(transformed_indices, reverse=True):
del indices_available[j]
for i, pos in enumerate(mapped_indices):
dp_all_indices[pos] = sublist[i]
final_indices = dp_all_indices
assert -1 not in final_indices, "Some indices were not assigned properly."
return iter(final_indices)
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
world_size: int,
lengths: Optional[List[int]] = None,
generator=None,
group_by_modality: bool = False,
):
if lengths is None:
raise ValueError("Lengths must be provided.")
self.batch_size = batch_size
self.world_size = world_size
self.lengths = lengths
self.generator = generator
self.group_by_modality = group_by_modality
def __len__(self):
return len(self.lengths)
def __iter__(self):
if self.group_by_modality:
indices = get_modality_length_grouped_indices(
self.lengths, self.batch_size, self.world_size, generator=self.generator
)
else:
indices = get_length_grouped_indices(
self.lengths, self.batch_size, self.world_size, generator=self.generator
)
return iter(indices)
class VILADPOTrainer(DPOTrainer):
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
# Always using Jason's sampler.
sample_len_list = self.args.sample_lens
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
num_replicas = self.args.world_size
rank = self.args.process_index
return VILADistributedSampler(
self.train_dataset,
num_replicas=num_replicas,
rank=rank,
seed=seed,
batch_size=self.args.train_batch_size,
sample_len_list=sample_len_list,
sp_degree=self.args.seq_parallel_size,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
)
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
if self.eval_dataset is None or not has_length(self.eval_dataset):
return None
# Always using Jason's sampler.
sample_len_list = self.args.eval_sample_lens
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
return VILADistributedSampler(
eval_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
batch_size=self.args.eval_batch_size,
sample_len_list=sample_len_list,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
)
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
if is_sagemaker_mp_enabled():
return super().create_optimizer()
# if self.sharded_ddp == ShardedDDPOption.SIMPLE:
# return super().create_optimizer()
opt_model = self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
if self.args.mm_projector_lr is not None:
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
"lr": self.args.mm_projector_lr,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.mm_projector_lr,
},
]
else:
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
if 0: # self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer = OSS(
params=optimizer_grouped_parameters,
optim=optimizer_cls,
**optimizer_kwargs,
)
else:
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return self.optimizer
def save_model(self, output_dir: Optional[str], _internal_call: bool):
## save tuned model separately
if self.is_deepspeed_enabled:
state_dict = self.accelerator.get_state_dict(self.deepspeed)
else:
# TODO(ligeng): fix save_model for multi-node training on large models (e.g., Llama-70b)
state_dict = self.model.state_dict()
if self.args.should_save:
return self.model.save_pretrained(output_dir, state_dict=state_dict)
class LLaVATrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_accepts_loss_kwargs = True
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
print('AF3 sampler')
sample_len_list = self.args.sample_lens
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
num_replicas = self.args.world_size
rank = self.args.process_index
longvila_sampler = self.args.longvila_sampler
if self.args.group_by_modality_length:
sampler = LengthGroupedVILADistributedSampler
if not isinstance(self.train_dataset, ConcatDataset):
lengths = self.train_dataset.modality_lengths
else:
lengths = []
for d in self.train_dataset.datasets:
lengths += d.modality_lengths
return sampler(
self.train_dataset,
lengths=lengths,
num_replicas=num_replicas,
rank=rank,
seed=seed,
batch_size=self.args.train_batch_size,
sp_degree=self.args.seq_parallel_size,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
group_by_modality=True
)
else:
sampler = LongVILADistributedSampler if longvila_sampler else VILADistributedSampler
return sampler(
self.train_dataset,
num_replicas=num_replicas,
rank=rank,
seed=seed,
batch_size=self.args.train_batch_size,
sample_len_list=sample_len_list,
sp_degree=self.args.seq_parallel_size,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
)
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
if self.eval_dataset is None or not has_length(self.eval_dataset):
return None
sample_len_list = self.args.eval_sample_lens
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
return VILADistributedSampler(
eval_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
batch_size=self.args.eval_batch_size,
sample_len_list=sample_len_list,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
)
def _inner_training_loop(self, batch_size: Optional[int] = None, *args, **kwargs):
# NOTE(zhijianl): In the latest transformers, if the batch size in the training arguments differs from
# the one in the training state, the batch size from the state is used by default. This can be
# problematic when resuming with different batch sizes or gradient accumulation steps. To prevent this,
# we enforce using the batch size specified in the training arguments.
batch_size = self.args.train_batch_size
return super()._inner_training_loop(batch_size, *args, **kwargs)
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
if is_sagemaker_mp_enabled():
return super().create_optimizer()
# if self.sharded_ddp == ShardedDDPOption.SIMPLE:
# return super().create_optimizer()
opt_model = self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
if self.args.mm_projector_lr is not None:
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
"lr": self.args.mm_projector_lr,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.mm_projector_lr,
},
]
elif self.args.vision_tower_lr is not None:
projector_parameters = [name for name, _ in opt_model.named_parameters() if "vision_tower" in name]
# projector_lora_A_parameters = [name for name in projector_parameters if "lora_A" in name]
# projector_lora_B_parameters = [name for name in projector_parameters if "lora_B" in name]
# other_lora_A_parameters = [name for name in opt_model.named_parameters() if "lora_A" in name and name not in projector_parameters]
# other_lora_B_parameters = [name for name in opt_model.named_parameters() if "lora_B" in name and name not in projector_parameters]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
"lr": self.args.vision_tower_lr,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.vision_tower_lr,
},
]
else:
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
if 0: # self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer = OSS(
params=optimizer_grouped_parameters,
optim=optimizer_cls,
**optimizer_kwargs,
)
else:
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return self.optimizer
def save_model(self, output_dir: Optional[str], _internal_call: bool):
## save tuned model separately
if self.is_deepspeed_enabled:
state_dict = self.accelerator.get_state_dict(self.deepspeed)
else:
# TODO(ligeng): fix save_model for multi-node training on large models (e.g., Llama-70b)
state_dict = self.model.state_dict()
if self.args.lora_enable:
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(self.model.named_parameters())
os.makedirs(output_dir, exist_ok=True)
torch.save(
non_lora_state_dict,
os.path.join(output_dir, "non_lora_trainables.bin"),
)
# config
self.model._name_or_path = output_dir
self.model.architectures = [self.model.__class__.__name__]
self.model.config.save_pretrained(output_dir)
if self.args.should_save:
return self.model.save_pretrained(output_dir, state_dict=state_dict)
def log(self, logs: Dict[str, float]) -> None:
"""
Log `logs` on the various objects watching training.
Subclass and override this method to inject custom behavior.
Args:
logs (`Dict[str, float]`):
The values to log.
"""
if self.state.epoch is not None:
logs["epoch"] = round(self.state.epoch, 2)
if self.args.include_num_input_tokens_seen:
logs["num_input_tokens_seen"] = self.state.num_input_tokens_seen
output = {**logs, **{"step": self.state.global_step}}
self.state.log_history.append(output)
if self.args.debug_e2e and self.control.should_training_stop:
# Only save log history if the current process is rank 0
if dist.get_rank() == 0:
with open(f"{self.args.output_dir}/log_history.json", "w") as f:
json.dump(self.state.log_history, f, indent=4)
self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
|