File size: 12,035 Bytes
174ae06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright (c) 2025 NVIDIA CORPORATION.
# Licensed under the MIT license.

# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
# LICENSE is in incl_licenses directory.

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# This file is modified from https://github.com/feifeibear/long-context-attention
# Implementation refers to USP Paper: https://arxiv.org/abs/2405.07719


from typing import Any, Tuple

import torch
import torch.distributed as dist
from torch import Tensor
from torch.nn import Module

from llava.train.sequence_parallel.globals import (
    get_ulysses_seq_len,
    get_ulysses_sp_pg,
    get_ulysses_sp_rank,
    get_ulysses_sp_size,
    set_ulysses_seq_len,
)


def all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor:
    """
    all-to-all for QKV

    Args:
        input (torch.tensor): a tensor sharded along dim scatter dim
        scatter_idx (int): default 1
        gather_idx (int): default 2
        group : torch process group

    Returns:
        torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
    """
    assert input.dim() == 4, f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"

    # seq_world_size = dist.get_world_size(group)
    # (DL): Change to ulysses size to handle hybrid parallelism.
    seq_world_size = get_ulysses_sp_size()
    if scatter_idx == 2 and gather_idx == 1:
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
        bs, shard_seqlen, hc, hs = input.shape
        # (Dacheng): For multi-modality use case, sequence length is different, causing unknown behavior for a2a.
        # Pad it first.
        # (Dacheng): This will trigger for each attention to make sure the second a2a is correct.
        # (TODO) Maybe can optimize to per forward call.
        ulysses_seq_len = [torch.zeros(1, dtype=torch.int64, device=input.device) for _ in range(get_ulysses_sp_size())]
        dist.barrier(group=get_ulysses_sp_pg())
        dist.all_gather(ulysses_seq_len, torch.tensor(shard_seqlen, device=input.device), group=get_ulysses_sp_pg())
        set_ulysses_seq_len(ulysses_seq_len)

        max_global_length = max(ulysses_seq_len)
        # pad to the second dimension to the longest
        input = torch.nn.functional.pad(input, (0, 0, 0, 0, 0, max_global_length - shard_seqlen))

        seqlen = max_global_length * seq_world_size  # shard_seqlen * seq_world_size
        shard_hc = hc // seq_world_size

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
        input_t = (
            # input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs)
            input.reshape(bs, max_global_length, seq_world_size, shard_hc, hs)
            .transpose(0, 2)
            .contiguous()
        )

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        dist.barrier(group=group)
        dist.all_to_all_single(output, input_t, group=group)

        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(seqlen, bs, shard_hc, hs)

        # then we will unpad it back
        output_list = torch.split(output, max_global_length, dim=0)
        assert len(output_list) == get_ulysses_sp_size()
        unpadded_output_list = [_output[: _seqlen.item()] for _output, _seqlen in zip(output_list, ulysses_seq_len)]

        # Concatenate the unpadded tensors back together
        output = torch.cat(unpadded_output_list)

        # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
        output = output.transpose(0, 1).contiguous().reshape(bs, sum(ulysses_seq_len), shard_hc, hs)

        # assert False

        return output

    elif scatter_idx == 1 and gather_idx == 2:
        ulysses_seq_len = get_ulysses_seq_len()
        assert ulysses_seq_len is not None, "the second a2a (scatter 1, gather 2) is called at first."
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
        bs, _, shard_hc, hs = input.shape
        hc = shard_hc * seq_world_size

        # First we need to recover how to pad
        max_global_length = max(ulysses_seq_len)

        unpadded_input_list = torch.split(input, ulysses_seq_len, dim=1)
        padded_input_list = [
            torch.nn.functional.pad(_unpadded_input, (0, 0, 0, 0, 0, max_global_length - _unpadded_input.shape[1]))
            for _unpadded_input in unpadded_input_list
        ]
        input = torch.cat(padded_input_list, dim=1)

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
        input_t = (
            input.reshape(bs, seq_world_size, max_global_length, shard_hc, hs)
            .transpose(0, 3)
            .transpose(0, 1)
            .contiguous()
            .reshape(seq_world_size, shard_hc, max_global_length, bs, hs)
        )

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
        dist.barrier(group=group)
        dist.all_to_all_single(output, input_t, group=group)

        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(hc, max_global_length, bs, hs)

        # unpad the output
        self_length = ulysses_seq_len[get_ulysses_sp_rank()]
        # print(f"Self length {self_length}")
        output = output[:, :self_length, :, :]

        # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
        output = output.transpose(0, 2).contiguous().reshape(bs, self_length, hc, hs)
        return output
    else:
        raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")


class SeqAllToAll4D(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        group: dist.ProcessGroup,
        input: Tensor,
        scatter_idx: int,
        gather_idx: int,
    ) -> Tensor:

        ctx.group = group
        ctx.scatter_idx = scatter_idx
        ctx.gather_idx = gather_idx

        return all_to_all_4D(input, scatter_idx, gather_idx, group=group)

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
        return (
            None,
            SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx),
            None,
            None,
        )


def all_to_all_5D(input: torch.tensor, scatter_idx: int = 3, gather_idx: int = 1, group=None) -> torch.tensor:
    """
    all-to-all for QKV
    forward (bs, seqlen/N, 3, hc, hs) -> (bs, seqlen, 3, hc/N, hs)

    Args:
        input (torch.tensor): a tensor sharded along dim scatter dim
        scatter_idx (int): default 1
        gather_idx (int): default 2
        group : torch process group

    Returns:
        torch.tensor: resharded tensor (bs, seqlen/P, 3, hc, hs)
    """
    assert input.dim() == 5, f"input must be 5D tensor, got {input.dim()} and shape {input.shape}"

    seq_world_size = dist.get_world_size(group)

    if scatter_idx == 3 and gather_idx == 1:
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, 3, hc, hs) output: (bs, seqlen, 3, hc/P, hs)
        bs, shard_seqlen, t_cnt, hc, hs = input.shape

        assert t_cnt == 3
        seqlen = shard_seqlen * seq_world_size
        shard_hc = hc // seq_world_size

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen/P, 3, hc, hs) -reshape-> (bs, seq_len/P, 3, P, hc/P, hs) -transpose(0,3)-> (P, seq_len/P, 3, bs, hc/P, hs)
        input_t = input.reshape(bs, shard_seqlen, 3, seq_world_size, shard_hc, hs).transpose(0, 3).contiguous()

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        # (P, seq_len/P, 3, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, 3, bs, hc/P, hs) scatter head
        dist.barrier(group=group)
        dist.all_to_all_single(output, input_t, group=group)

        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(seqlen, 3, bs, shard_hc, hs)

        # (seq_len, 3, bs, hc/P, hs) -trans-> (bs, seq_len, 3, hc/P, hs)
        output = output.transpose(0, 2).transpose(1, 2).contiguous()

        return output.reshape(bs, seqlen, 3, shard_hc, hs).contiguous()
    elif scatter_idx == 1 and gather_idx == 3:
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
        bs, seqlen, _, shard_hc, hs = input.shape
        hc = shard_hc * seq_world_size
        shard_seqlen = seqlen // seq_world_size
        seq_world_size = dist.get_world_size(group)

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen, 3, hc/P, hs) -reshape-> (bs, P, seq_len/P, 3, hc/P, hs) -transpose(0, 4)-> (hc/P, P, seqlen/P, 3, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, 3, bs, hs)
        input_t = (
            input.reshape(bs, seq_world_size, shard_seqlen, 3, shard_hc, hs)
            .transpose(0, 4)
            .transpose(0, 1)
            .contiguous()
            .reshape(seq_world_size, shard_hc, shard_seqlen, 3, bs, hs)
        )

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
        dist.barrier(group=group)
        dist.all_to_all_single(output, input_t, group=group)

        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(hc, shard_seqlen, 3, bs, hs)

        # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
        output = output.transpose(0, 3).contiguous()

        return output.reshape(bs, shard_seqlen, 3, hc, hs).contiguous()
    else:
        raise RuntimeError("scatter_idx must be 1 or 3 and gather_idx must be 1 or 3")


class SeqAllToAll5D(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        group: dist.ProcessGroup,
        input: Tensor,
        scatter_idx: int = 3,
        gather_idx: int = 1,
    ) -> Tensor:

        ctx.group = group
        ctx.scatter_idx = scatter_idx
        ctx.gather_idx = gather_idx

        return all_to_all_5D(input, scatter_idx, gather_idx, group=group)

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
        return (
            None,
            SeqAllToAll5D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx),
            None,
            None,
        )


class SeqAllGather(torch.autograd.Function):
    @staticmethod
    def forward(ctx: Any, group: dist.ProcessGroup, input: Any) -> Tensor:
        # ctx.group = group
        ctx.save_for_backward(input[0])
        all_gather_list = input[0]
        all_gather_tensor = input[1]
        dist.all_gather(all_gather_list, all_gather_tensor, group=group)
        # torch.concat
        return torch.stack(all_gather_list, dim=0)

    @staticmethod
    def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
        (tensor,) = ctx.saved_tensors
        return None, (None, tensor)